論文の概要: Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model
- arxiv url: http://arxiv.org/abs/2407.04489v1
- Date: Fri, 5 Jul 2024 13:15:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 13:30:37.804605
- Title: Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model
- Title(参考訳): Dude:大型ビジョンランゲージモデルのための二元分布対応コンテキストプロンプト学習
- Authors: Duy M. H. Nguyen, An T. Le, Trung Q. Nguyen, Nghiem T. Diep, Tai Nguyen, Duy Duong-Tran, Jan Peters, Li Shen, Mathias Niepert, Daniel Sonntag,
- Abstract要約: ドメイン共有コンテキストとクラス固有コンテキストの両方の2つのコンテキストに基づいた新しいフレームワークを導入する。
このような二重プロンプト手法は、大規模言語モデルで符号化された暗黙的および明示的な要素を結合することによって、モデルの特徴表現を強化する。
また、構築されたプロンプトと視覚トークンの関係を定量化するために、不均衡最適輸送(UOT)理論を定式化する。
- 参考スコア(独自算出の注目度): 27.56988000960972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt learning methods are gaining increasing attention due to their ability to customize large vision-language models to new domains using pre-trained contextual knowledge and minimal training data. However, existing works typically rely on optimizing unified prompt inputs, often struggling with fine-grained classification tasks due to insufficient discriminative attributes. To tackle this, we consider a new framework based on a dual context of both domain-shared and class-specific contexts, where the latter is generated by Large Language Models (LLMs) such as GPTs. Such dual prompt methods enhance the model's feature representation by joining implicit and explicit factors encoded in LLM knowledge. Moreover, we formulate the Unbalanced Optimal Transport (UOT) theory to quantify the relationships between constructed prompts and visual tokens. Through partial matching, UOT can properly align discrete sets of visual tokens and prompt embeddings under different mass distributions, which is particularly valuable for handling irrelevant or noisy elements, ensuring that the preservation of mass does not restrict transport solutions. Furthermore, UOT's characteristics integrate seamlessly with image augmentation, expanding the training sample pool while maintaining a reasonable distance between perturbed images and prompt inputs. Extensive experiments across few-shot classification and adapter settings substantiate the superiority of our model over current state-of-the-art baselines.
- Abstract(参考訳): 事前学習された文脈知識と最小限のトレーニングデータを用いて、大規模視覚言語モデルを新しいドメインにカスタマイズする能力により、プロンプト学習手法が注目されている。
しかし、既存の研究は通常、統一的なインプットの最適化に依存しており、しばしば識別的属性が不十分なため、きめ細かい分類作業に苦しむ。
そこで本研究では,GPTのような大規模言語モデル(LLM)によって生成されるドメイン共有コンテキストとクラス固有コンテキストの2つのコンテキストに基づく新しいフレームワークについて考察する。
このような二重プロンプト法は、LLMの知識に符号化された暗黙的および明示的な要素を結合することによって、モデルの特徴表現を強化する。
さらに、構築されたプロンプトと視覚トークンの関係を定量化するために、不均衡最適輸送(UOT)理論を定式化する。
部分的マッチングにより、UOTは個別の視覚トークンの集合を適切に調整し、異なる質量分布下で埋め込みを促すことができ、これは特に無関係またはノイズな要素を扱うのに有用であり、質量の保存が輸送溶液を制限しないことを保証する。
さらに、UOTの特徴は画像拡張とシームレスに統合され、摂動画像と入力の適切な距離を維持しながらトレーニングサンプルプールが拡張される。
数ショットの分類とアダプタ設定による大規模な実験は、現在の最先端のベースラインよりも、我々のモデルの優位性を裏付けるものだ。
関連論文リスト
- OLIVE: Object Level In-Context Visual Embeddings [8.168219870640318]
テキスト内ビジュアルオブジェクトベクトルを用いた大規模言語モデルを提案する。
これにより、画像パッチ機能の長い配列を融合する必要がなくなり、トレーニングが大幅にスピードアップする。
実験の結果,提案手法は競合参照対象分類とキャプション性能を実現する。
論文 参考訳(メタデータ) (2024-06-02T21:36:31Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - Context-Aware Prompt Tuning for Vision-Language Model with
Dual-Alignment [15.180715595425864]
我々は、事前学習された大言語モデル(LLM)を組み込むことで、視覚言語モデルの迅速な学習を改善する新しい手法を提案する。
DuAl-PTでは、明示的および暗黙的両方のコンテキストモデリングの恩恵を受けながら、よりコンテキスト対応のプロンプトを学習することを提案する。
実証的には、DuAl-PTは、数ショットの認識とベース・ツー・ニューな一般化で、11のダウンストリームデータセット上で優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-09-08T06:51:15Z) - DualCoOp++: Fast and Effective Adaptation to Multi-Label Recognition
with Limited Annotations [79.433122872973]
低ラベル体制における多ラベル画像認識は、大きな課題と実践的重要性の課題である。
我々は、何百万もの補助的な画像テキストペアで事前訓練されたテキストと視覚的特徴の強力なアライメントを活用する。
Evidence-guided Dual Context Optimization (DualCoOp++) という,効率的かつ効果的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-08-03T17:33:20Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
本稿では,PromptSRCと呼ばれる自己正規化フレームワークを提案する。
PromptSRCはタスク固有の汎用表現とタスクに依存しない汎用表現の両方に最適化するプロンプトを導く。
論文 参考訳(メタデータ) (2023-07-13T17:59:35Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
本稿では,視覚と言語分岐の両方を対象としたマルチモーダル・プロンプト・ラーニング(MaPLe)を提案し,視覚と言語表現の整合性を改善する。
最先端のCo-CoOpと比較すると、MaPLeは優れた性能を示し、新規クラスでは3.45%の絶対的な向上を達成している。
論文 参考訳(メタデータ) (2022-10-06T17:59:56Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
相関情報ボトルネック (CIB) は圧縮と表現の冗長性のトレードオフを求める。
マルチモーダル入力と表現の相互情報に対して,理論上界を厳密に導出する。
論文 参考訳(メタデータ) (2022-09-14T22:04:10Z) - DUET: Cross-modal Semantic Grounding for Contrastive Zero-shot Learning [37.48292304239107]
本稿では, DUET という変換器を用いたエンドツーエンドZSL手法を提案する。
画像からセマンティック属性を分離するモデルの能力を調べるために,モーダルなセマンティックグラウンドネットワークを開発した。
DUETは、しばしば最先端のパフォーマンスを達成することができ、そのコンポーネントは有効であり、予測は解釈可能である。
論文 参考訳(メタデータ) (2022-07-04T11:12:12Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
画像とテキストを共同で表現するマルチモーダル表現学習手法が提案されている。
これらの手法は,大規模マルチモーダル事前学習から高レベルな意味情報を取得することにより,優れた性能を実現する。
そこで本稿では,非バイアスのDense Contrastive Visual-Linguistic Pretrainingを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。