論文の概要: Hi3DEval: Advancing 3D Generation Evaluation with Hierarchical Validity
- arxiv url: http://arxiv.org/abs/2508.05609v1
- Date: Thu, 07 Aug 2025 17:50:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.976969
- Title: Hi3DEval: Advancing 3D Generation Evaluation with Hierarchical Validity
- Title(参考訳): Hi3DEval: 階層的妥当性による3D生成評価の改善
- Authors: Yuhan Zhang, Long Zhuo, Ziyang Chu, Tong Wu, Zhibing Li, Liang Pan, Dahua Lin, Ziwei Liu,
- Abstract要約: Hi3DEvalは3D生成コンテンツに適した階層的評価フレームワークである。
素材リアリズムを明示的に評価することで審美的外観を超えてテクスチャ評価を拡張する。
ハイブリッド3次元表現に基づく3次元自動スコアリングシステムを提案する。
- 参考スコア(独自算出の注目度): 78.7107376451476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite rapid advances in 3D content generation, quality assessment for the generated 3D assets remains challenging. Existing methods mainly rely on image-based metrics and operate solely at the object level, limiting their ability to capture spatial coherence, material authenticity, and high-fidelity local details. 1) To address these challenges, we introduce Hi3DEval, a hierarchical evaluation framework tailored for 3D generative content. It combines both object-level and part-level evaluation, enabling holistic assessments across multiple dimensions as well as fine-grained quality analysis. Additionally, we extend texture evaluation beyond aesthetic appearance by explicitly assessing material realism, focusing on attributes such as albedo, saturation, and metallicness. 2) To support this framework, we construct Hi3DBench, a large-scale dataset comprising diverse 3D assets and high-quality annotations, accompanied by a reliable multi-agent annotation pipeline. We further propose a 3D-aware automated scoring system based on hybrid 3D representations. Specifically, we leverage video-based representations for object-level and material-subject evaluations to enhance modeling of spatio-temporal consistency and employ pretrained 3D features for part-level perception. Extensive experiments demonstrate that our approach outperforms existing image-based metrics in modeling 3D characteristics and achieves superior alignment with human preference, providing a scalable alternative to manual evaluations. The project page is available at https://zyh482.github.io/Hi3DEval/.
- Abstract(参考訳): 3Dコンテンツ生成の急速な進歩にもかかわらず、生成された3D資産の品質評価は依然として困難である。
既存の手法は主に画像ベースのメトリクスに依存し、オブジェクトレベルでのみ動作し、空間コヒーレンス、物質認証、高忠実度局所詳細をキャプチャする能力を制限する。
1) これらの課題に対処するために,3次元生成コンテンツに適した階層的評価フレームワークであるHi3DEvalを紹介する。
オブジェクトレベルの評価と部分レベルの評価を組み合わせることで、複数の次元にわたる全体的評価と、きめ細かい品質分析を可能にします。
さらに, 本研究は, アルベド, 飽和, 金属性などの属性に着目し, 物質的リアリズムを明確に評価することで, 審美的外観を超えてテクスチャ評価を拡張した。
2) このフレームワークをサポートするために,多様な3Dアセットと高品質アノテーションからなる大規模データセットであるHi3DBenchを構築した。
さらに,ハイブリッド3次元表現に基づく3次元自動スコアリングシステムを提案する。
具体的には、オブジェクトレベルと素材オブジェクトの評価にビデオベース表現を活用し、時空間一貫性のモデリングを強化し、パートレベルの知覚に事前訓練された3D特徴を用いる。
大規模な実験により,本手法は3次元特性のモデリングにおいて既存の画像ベースの指標よりも優れており,人間の嗜好との整合性が向上し,手動による評価に代わるスケーラブルな代替手段が提供されることが示された。
プロジェクトページはhttps://zyh482.github.io/Hi3DEval/で公開されている。
関連論文リスト
- End-to-End Fine-Tuning of 3D Texture Generation using Differentiable Rewards [8.953379216683732]
本稿では,人間のフィードバックを3次元テクスチャパイプラインに直接埋め込む,エンドツーエンドの微分可能・強化学習不要なフレームワークを提案する。
幾何学的および外見的モジュールによる好み信号のバックプロパゲーションにより、3次元幾何学的構造を尊重し、所望の基準と整合するテクスチャを生成する。
論文 参考訳(メタデータ) (2025-06-23T06:24:12Z) - AI-powered Contextual 3D Environment Generation: A Systematic Review [49.1574468325115]
本研究では,既存の3次元シーン生成のための生成AI技術について,体系的なレビューを行う。
最先端のアプローチを検討することで、シーンの真正性やテキスト入力の影響など、重要な課題が提示される。
論文 参考訳(メタデータ) (2025-06-05T15:56:28Z) - E3D-Bench: A Benchmark for End-to-End 3D Geometric Foundation Models [78.1674905950243]
3次元幾何学基礎モデル(GFM)の総合ベンチマークを初めて提示する。
GFMは、単一のフィードフォワードパスで密度の高い3D表現を直接予測し、スローまたは未使用のカメラパラメータを不要にする。
我々は16の最先端GFMを評価し、タスクやドメイン間の長所と短所を明らかにした。
すべてのコード、評価スクリプト、処理されたデータは公開され、3D空間インテリジェンスの研究が加速される。
論文 参考訳(メタデータ) (2025-06-02T17:53:09Z) - Eval3D: Interpretable and Fine-grained Evaluation for 3D Generation [134.53804996949287]
生成した3D資産の品質を忠実に評価できる細粒度で解釈可能な評価ツールであるEval3Dを紹介する。
我々のキーとなる観察は、意味論や幾何学的整合性といった3D生成の多くの望ましい特性を効果的に捉えられることである。
以前の研究と比較すると、Eval3Dはピクセル単位での測定を行い、正確な3D空間フィードバックを可能にし、人間の判断とより密に一致させる。
論文 参考訳(メタデータ) (2025-04-25T17:22:05Z) - 3DGen-Bench: Comprehensive Benchmark Suite for 3D Generative Models [94.48803082248872]
3D世代は急速に進歩しているが、3D評価の開発はペースを保っていない。
3DGen-Arenaは、公開ユーザと専門家アノテータの両方から人間の好みを収集する統合プラットフォームである。
このデータセットを用いて、CLIPベースのスコアモデルである3DGen-ScoreとMLLMベースの自動評価器である3DGen-Evalをさらに訓練する。
論文 参考訳(メタデータ) (2025-03-27T17:53:00Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
本稿では,マルチモーダルな3Dシーンデータセットと階層型言語アノテーションを用いたベンチマーク,MMScanを構築した。
結果として得られたマルチモーダルな3Dデータセットは、109kオブジェクトと7.7kリージョン上の1.4Mメタアノテーション付きキャプションと、3Dビジュアルグラウンドと質問応答ベンチマークのための3.04M以上の多様なサンプルを含んでいる。
論文 参考訳(メタデータ) (2024-06-13T17:59:30Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
本稿では,3次元オートデコーダをコアとした静的・明瞭な3次元アセットの生成に対して,新しいアプローチを提案する。
3D Autodecoderフレームワークは、ターゲットデータセットから学んだプロパティを潜時空間に埋め込む。
次に、適切な中間体積潜在空間を特定し、ロバストな正規化と非正規化演算を導入する。
論文 参考訳(メタデータ) (2023-07-07T17:59:14Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
本稿では,3次元オブジェクト検出(CMR3D)フレームワークのためのコンテキスト型マルチステージリファインメントを提案する。
我々のフレームワークは3Dシーンを入力として取り、シーンの有用なコンテキスト情報を明示的に統合しようと試みている。
3Dオブジェクトの検出に加えて,3Dオブジェクトカウント問題に対するフレームワークの有効性について検討する。
論文 参考訳(メタデータ) (2022-09-13T05:26:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。