Cooper: Co-Optimizing Policy and Reward Models in Reinforcement Learning for Large Language Models
- URL: http://arxiv.org/abs/2508.05613v1
- Date: Thu, 07 Aug 2025 17:53:56 GMT
- Title: Cooper: Co-Optimizing Policy and Reward Models in Reinforcement Learning for Large Language Models
- Authors: Haitao Hong, Yuchen Yan, Xingyu Wu, Guiyang Hou, Wenqi Zhang, Weiming Lu, Yongliang Shen, Jun Xiao,
- Abstract summary: There are two mainstream reward paradigms: model-based rewards and rule-based rewards.<n>Both approaches suffer from limitations: rule-based rewards lack robustness, while model-based rewards are vulnerable to reward hacking.<n>We propose Cooper, a RL framework that jointly optimize both the policy model and the reward model.<n>Our experiments show that Cooper not only alleviates reward hacking but also improves end-to-end RL performance, for instance, achieving a 0.54% gain in average accuracy on Qwen2.5-1.5B-Instruct.
- Score: 28.542061921495353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable performance in reasoning tasks, where reinforcement learning (RL) serves as a key algorithm for enhancing their reasoning capabilities. Currently, there are two mainstream reward paradigms: model-based rewards and rule-based rewards. However, both approaches suffer from limitations: rule-based rewards lack robustness, while model-based rewards are vulnerable to reward hacking. To address these issues, we propose Cooper(Co-optimizing Policy Model and Reward Model), a RL framework that jointly optimizes both the policy model and the reward model. Cooper leverages the high precision of rule-based rewards when identifying correct responses, and dynamically constructs and selects positive-negative sample pairs for continued training the reward model. This design enhances robustness and mitigates the risk of reward hacking. To further support Cooper, we introduce a hybrid annotation strategy that efficiently and accurately generates training data for the reward model. We also propose a reference-based reward modeling paradigm, where the reward model takes a reference answer as input. Based on this design, we train a reward model named VerifyRM, which achieves higher accuracy on VerifyBench compared to other models of the same size. We conduct reinforcement learning using both VerifyRM and Cooper. Our experiments show that Cooper not only alleviates reward hacking but also improves end-to-end RL performance, for instance, achieving a 0.54% gain in average accuracy on Qwen2.5-1.5B-Instruct. Our findings demonstrate that dynamically updating reward model is an effective way to combat reward hacking, providing a reference for better integrating reward models into RL.
Related papers
- Activation Reward Models for Few-Shot Model Alignment [77.37511364793515]
We introduce Activation Reward Models (Activation RMs)<n>Activation RMs leverage activation steering to construct well-aligned reward signals using minimal supervision and no additional model finetuning.<n>We demonstrate the effectiveness of Activation RMs in mitigating reward hacking behaviors, highlighting their utility for safety-critical applications.
arXiv Detail & Related papers (2025-07-02T05:10:29Z) - Reward Reasoning Model [104.39256985858428]
Reward Reasoning Models (RRMs) are designed to execute a deliberate reasoning process before generating final rewards.<n>We implement a reinforcement learning framework that fosters self-evolved reward reasoning capabilities.<n> Notably, RRMs can adaptively exploit test-time compute to further improve reward accuracy.
arXiv Detail & Related papers (2025-05-20T17:58:03Z) - RM-R1: Reward Modeling as Reasoning [81.50471199906738]
Reasoning Reward Models (ReasRMs) formulate reward modeling as a reasoning task.<n>We propose a reasoning-oriented training pipeline and train a family of ReasRMs, RM-R1.<n>Our models achieve state-of-the-art performance across three reward model benchmarks on average.
arXiv Detail & Related papers (2025-05-05T06:11:12Z) - Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning [25.817231106021552]
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks.<n>However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning.<n>In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning.
arXiv Detail & Related papers (2025-04-21T17:59:02Z) - Agentic Reward Modeling: Integrating Human Preferences with Verifiable Correctness Signals for Reliable Reward Systems [54.4392552373835]
Reward models (RMs) are crucial for the training and inference-time scaling up of large language models (LLMs)<n>We propose agentic reward modeling, a reward system that combines reward models with verifiable correctness signals to provide reliable rewards.<n>We conduct comprehensive experiments on existing reward model benchmarks and inference time best-of-n searches on real-world downstream tasks.
arXiv Detail & Related papers (2025-02-26T17:19:12Z) - Evaluating Robustness of Reward Models for Mathematical Reasoning [14.97819343313859]
We introduce a new design for reliable evaluation of reward models, and to validate this, we construct RewardMATH.
We demonstrate that the scores on RewardMATH strongly correlate with the results of optimized policy and effectively estimate reward overoptimization.
arXiv Detail & Related papers (2024-10-02T16:39:58Z) - HAF-RM: A Hybrid Alignment Framework for Reward Model Training [51.59246299566669]
We propose a hybrid alignment framework HaF-RM for reward model training.<n>It offers a principled and effective approach to enhancing the performance and alignment of reward models.
arXiv Detail & Related papers (2024-07-04T23:26:56Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z) - Scaling Laws for Reward Model Overoptimization [19.93331579503503]
We study how the gold reward model score changes as we optimize against the proxy reward model using either reinforcement learning or best-of-$n$ sampling.
We also study the effect on this relationship of the size of the reward model dataset, the number of reward model and policy parameters, and the coefficient of the KL penalty added to the reward in the reinforcement learning setup.
arXiv Detail & Related papers (2022-10-19T17:56:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.