Genie Envisioner: A Unified World Foundation Platform for Robotic Manipulation
- URL: http://arxiv.org/abs/2508.05635v1
- Date: Thu, 07 Aug 2025 17:59:44 GMT
- Title: Genie Envisioner: A Unified World Foundation Platform for Robotic Manipulation
- Authors: Yue Liao, Pengfei Zhou, Siyuan Huang, Donglin Yang, Shengcong Chen, Yuxin Jiang, Yue Hu, Jingbin Cai, Si Liu, Jianlan Luo, Liliang Chen, Shuicheng Yan, Maoqing Yao, Guanghui Ren,
- Abstract summary: We introduce Genie Envisioner (GE), a unified world foundation platform for robotic manipulation.<n>GE integrates policy learning, evaluation, and simulation within a single video-generative framework.
- Score: 65.30763239365928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Genie Envisioner (GE), a unified world foundation platform for robotic manipulation that integrates policy learning, evaluation, and simulation within a single video-generative framework. At its core, GE-Base is a large-scale, instruction-conditioned video diffusion model that captures the spatial, temporal, and semantic dynamics of real-world robotic interactions in a structured latent space. Built upon this foundation, GE-Act maps latent representations to executable action trajectories through a lightweight, flow-matching decoder, enabling precise and generalizable policy inference across diverse embodiments with minimal supervision. To support scalable evaluation and training, GE-Sim serves as an action-conditioned neural simulator, producing high-fidelity rollouts for closed-loop policy development. The platform is further equipped with EWMBench, a standardized benchmark suite measuring visual fidelity, physical consistency, and instruction-action alignment. Together, these components establish Genie Envisioner as a scalable and practical foundation for instruction-driven, general-purpose embodied intelligence. All code, models, and benchmarks will be released publicly.
Related papers
- UNO: Unified Self-Supervised Monocular Odometry for Platform-Agnostic Deployment [22.92093036869778]
We present UNO, a unified visual odometry framework that enables robust and pose estimation across diverse environments.<n>Our approach generalizes effectively across a wide range of real-world scenarios, including autonomous vehicles, aerial drones, mobile robots, and handheld devices.<n>We extensively evaluate our method on three major benchmark datasets.
arXiv Detail & Related papers (2025-06-08T06:30:37Z) - Hierarchical Language Models for Semantic Navigation and Manipulation in an Aerial-Ground Robotic System [7.266794815157721]
We propose a hierarchical framework integrating a prompted Large Language Model (LLM) and a fine-tuned Vision Language Model (VLM)<n>The LLM decomposes tasks and constructs a global semantic map, while the VLM extracts task-specified semantic labels and 2D spatial information from aerial images to support local planning.<n>This is the first demonstration of an aerial-ground heterogeneous system integrating VLM-based perception with LLM-driven task reasoning and motion planning.
arXiv Detail & Related papers (2025-06-05T13:27:41Z) - FLARE: Robot Learning with Implicit World Modeling [87.81846091038676]
$textbfFLARE$ integrates predictive latent world modeling into robot policy learning.<n>$textbfFLARE$ achieves state-of-the-art performance, outperforming prior policy learning baselines by up to 26%.<n>Our results establish $textbfFLARE$ as a general and scalable approach for combining implicit world modeling with high-frequency robotic control.
arXiv Detail & Related papers (2025-05-21T15:33:27Z) - Flex: End-to-End Text-Instructed Visual Navigation from Foundation Model Features [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.<n>Our findings are synthesized in Flex (Fly lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.<n>We demonstrate the effectiveness of this approach on a quadrotor fly-to-target task, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - IRASim: A Fine-Grained World Model for Robot Manipulation [24.591694756757278]
We present IRASim, a novel world model capable of generating videos with fine-grained robot-object interaction details.<n>We train a diffusion transformer and introduce a novel frame-level action-conditioning module within each transformer block to explicitly model and strengthen the action-frame alignment.
arXiv Detail & Related papers (2024-06-20T17:50:16Z) - iVideoGPT: Interactive VideoGPTs are Scalable World Models [70.02290687442624]
World models empower model-based agents to interactively explore, reason, and plan within imagined environments for real-world decision-making.
This work introduces Interactive VideoGPT, a scalable autoregressive transformer framework that integrates multimodal signals--visual observations, actions, and rewards--into a sequence of tokens.
iVideoGPT features a novel compressive tokenization technique that efficiently discretizes high-dimensional visual observations.
arXiv Detail & Related papers (2024-05-24T05:29:12Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
We build effective dynamical models that are amenable to sample-based learning.
We show that learning the dynamics on a Lie algebra vector space is more effective than learning a direct state transition model.
This work sheds light on a connection between learning of dynamics and Lie group properties, which opens doors for new research directions.
arXiv Detail & Related papers (2021-04-07T01:08:18Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
We present a deep imitation learning framework for robotic bimanual manipulation.
A core challenge is to generalize the manipulation skills to objects in different locations.
We propose to (i) decompose the multi-modal dynamics into elemental movement primitives, (ii) parameterize each primitive using a recurrent graph neural network to capture interactions, and (iii) integrate a high-level planner that composes primitives sequentially and a low-level controller to combine primitive dynamics and inverse kinematics control.
arXiv Detail & Related papers (2020-10-11T01:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.