論文の概要: AGI for the Earth, the path, possibilities and how to evaluate intelligence of models that work with Earth Observation Data?
- arxiv url: http://arxiv.org/abs/2508.06057v1
- Date: Fri, 08 Aug 2025 06:28:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-11 20:39:06.102717
- Title: AGI for the Earth, the path, possibilities and how to evaluate intelligence of models that work with Earth Observation Data?
- Title(参考訳): AGI for the Earth, the path, potential and how to evaluate intelligence of model that work with Earth Observation Data?
- Authors: Mojtaba Valipour, Kelly Zheng, James Lowman, Spencer Szabados, Mike Gartner, Bobby Braswell,
- Abstract要約: 地球観測データがインテリジェントモデルに有用である理由を論じ、既存のベンチマークをレビューし、それらの制限を強調します。
本稿では、地球観測モデルを評価するためのより包括的なベンチマークの必要性を強調する。
- 参考スコア(独自算出の注目度): 0.08246494848934446
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Artificial General Intelligence (AGI) is closer than ever to becoming a reality, sparking widespread enthusiasm in the research community to collect and work with various modalities, including text, image, video, and audio. Despite recent efforts, satellite spectral imagery, as an additional modality, has yet to receive the attention it deserves. This area presents unique challenges, but also holds great promise in advancing the capabilities of AGI in understanding the natural world. In this paper, we argue why Earth Observation data is useful for an intelligent model, and then we review existing benchmarks and highlight their limitations in evaluating the generalization ability of foundation models in this domain. This paper emphasizes the need for a more comprehensive benchmark to evaluate earth observation models. To facilitate this, we propose a comprehensive set of tasks that a benchmark should encompass to effectively assess a model's ability to understand and interact with Earth observation data.
- Abstract(参考訳): 人工知能(Artificial General Intelligence, AGI)は、これまで以上に現実化に近づいている。
近年の努力にもかかわらず、衛星のスペクトル画像は追加のモダリティとして、まだ注目に値するものを受け取っていない。
この領域には固有の課題があるが、自然世界を理解する上でのAGIの能力向上にも大きな期待が持てる。
本稿では,地球観測データがインテリジェントモデルに有用である理由を論じ,既存のベンチマークをレビューし,基礎モデルの一般化能力を評価する上での限界を明らかにする。
本稿では、地球観測モデルを評価するためのより包括的なベンチマークの必要性を強調する。
そこで本研究では,地球観測データの理解と相互作用を効果的に評価するために,ベンチマークが包含すべきタスクの包括的セットを提案する。
関連論文リスト
- Towards Scalable and Generalizable Earth Observation Data Mining via Foundation Model Composition [0.0]
リモートセンシングと一般ビジョンデータセットに事前訓練された基礎モデルを効果的に組み合わせて性能を向上させることができるかを検討する。
その結果、より小さな事前訓練モデルの特徴レベルのアンサンブルは、はるかに大きなモデルの性能に適合するか、超える可能性があることがわかった。
この研究は、よりコンパクトなモデルにアンサンブルの強度を伝達するために知識蒸留を適用する可能性を強調している。
論文 参考訳(メタデータ) (2025-06-25T07:02:42Z) - Vision Generalist Model: A Survey [87.49797517847132]
本稿では、ビジョンジェネラリストモデルの概要を概観し、その分野におけるその特性と能力について考察する。
関連ドメインへの簡単な探索を行い、相互接続と潜在的なシナジーに光を当てます。
論文 参考訳(メタデータ) (2025-06-11T17:23:41Z) - No Location Left Behind: Measuring and Improving the Fairness of Implicit Representations for Earth Data [13.412573082645096]
暗黙の神経表現(INR)は、地球表象の課題に対処する上での公約が増大している。
既存の手法はグローバルな平均性能を不均等に優先する。
FAIR-Earthは、地球表象の不等式を調べ、挑戦するための第一種データセットである。
論文 参考訳(メタデータ) (2025-02-05T16:51:13Z) - Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
本調査は、リモートセンシング基礎モデル(RSFM)の新しい分野を体系的にレビューする。
モチベーションと背景の概要から始まり、続いて基本概念が導入された。
我々はこれらのモデルを公開データセットと比較し、既存の課題について議論し、今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:08:21Z) - Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond [101.15395503285804]
一般世界モデルは、人工知能(AGI)の実現への決定的な道のりを表現している
本調査では,世界モデルの最新動向を包括的に調査する。
我々は,世界モデルの課題と限界について検討し,今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-05-06T14:37:07Z) - There Are No Data Like More Data- Datasets for Deep Learning in Earth
Observation [6.839093061382966]
私たちは、地球観測データ専用の機械学習データセットをスポットライトに入れたいと思っています。
我々は、私たちのデータの性質が地球観測コミュニティを区別するものであるという理解に貢献したいと考えています。
論文 参考訳(メタデータ) (2023-10-30T02:19:16Z) - TMHOI: Translational Model for Human-Object Interaction Detection [18.804647133922195]
人-物間相互作用(HOI)を検出するための革新的なグラフベースアプローチを提案する。
本手法は,空間的知識と意味的知識を統合することで,HOIの感情表現を効果的に捉える。
我々のアプローチは、既存の最先端のグラフベースの手法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2023-03-07T21:52:10Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
本研究では,現実の道路環境に対する確率論的予測世界モデル学習のためのフレームワークを提案する。
従来の手法では、学習のための基礎的真理として完全状態を必要とするが、HVAEが部分的に観察された状態のみから完全状態を予測することを学べる新しい逐次訓練法を提案する。
論文 参考訳(メタデータ) (2023-01-12T02:07:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。