論文の概要: GFlowNets for Learning Better Drug-Drug Interaction Representations
- arxiv url: http://arxiv.org/abs/2508.06576v1
- Date: Thu, 07 Aug 2025 14:03:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.45105
- Title: GFlowNets for Learning Better Drug-Drug Interaction Representations
- Title(参考訳): GFlowNets for Learning Better Drug-Drug Interaction Representation
- Authors: Azmine Toushik Wasi,
- Abstract要約: 本稿では,生成フローネットワーク(GFlowNet)と変分グラフオートエンコーダ(VGAE)を組み合わせて,希少クラスの合成サンプルを生成するフレームワークを提案する。
我々のアプローチは、相互作用タイプ間の予測性能を高め、臨床信頼性を向上する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Drug-drug interactions pose a significant challenge in clinical pharmacology, with severe class imbalance among interaction types limiting the effectiveness of predictive models. Common interactions dominate datasets, while rare but critical interactions remain underrepresented, leading to poor model performance on infrequent cases. Existing methods often treat DDI prediction as a binary problem, ignoring class-specific nuances and exacerbating bias toward frequent interactions. To address this, we propose a framework combining Generative Flow Networks (GFlowNet) with Variational Graph Autoencoders (VGAE) to generate synthetic samples for rare classes, improving model balance and generate effective and novel DDI pairs. Our approach enhances predictive performance across interaction types, ensuring better clinical reliability.
- Abstract(参考訳): 薬物と薬物の相互作用は、臨床薬理学において重要な課題であり、予測モデルの有効性を制限する相互作用タイプ間の深刻なクラス不均衡がある。
共通の相互作用がデータセットを支配しているが、希少だが重要な相互作用は相変わらず表現されていないため、頻度の低いケースではモデル性能が劣る。
既存の方法は、しばしばDDI予測を二項問題として扱い、クラス固有のニュアンスを無視し、頻繁な相互作用に対するバイアスを悪化させる。
そこで本研究では,生成フローネットワーク(GFlowNet)と変分グラフオートエンコーダ(VGAE)を組み合わせて,レアクラスの合成サンプルを生成し,モデルバランスを改善し,有効かつ新しいDDIペアを生成するフレームワークを提案する。
我々のアプローチは、相互作用タイプ間の予測性能を高め、臨床信頼性を向上する。
関連論文リスト
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - A deep graph model for the signed interaction prediction in biological network [1.03121181235382]
生物学的ネットワークにおける署名された相互作用の予測は、薬物のメカニズムを理解し、薬物の再利用を促進するために重要である。
textbfRGCNTDは、極性(活性化、阻害など)と非極性(結合、影響など)の両方を予測できるように設計されている。
我々は,新たな評価指標である textitAUCtextsubscriptpolarity と textitCP@500 を導入し,相互作用型を識別するモデルの能力を評価する。
論文 参考訳(メタデータ) (2024-07-10T04:28:21Z) - Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent
Dynamical Systems [70.84976977950075]
実世界のマルチエージェントシステムは、しばしば動的で連続的であり、エージェントは時間とともにその軌道や相互作用を共進化させ、変化させる。
本稿では,グラフニューラルネットワーク(GNN)をODE関数として,エージェント間の連続的な相互作用をキャプチャする新しいモデルを提案する。
我々のモデルの主な革新は、治療の時間依存表現を学習し、ODE関数にそれらを組み込むことで、潜在的な結果の正確な予測を可能にすることである。
論文 参考訳(メタデータ) (2024-02-29T23:07:07Z) - DDIPrompt: Drug-Drug Interaction Event Prediction based on Graph Prompt Learning [15.69547371747469]
DDIPromptは、グラフプロンプト学習の最近の進歩に触発された革新的なソリューションである。
我々のフレームワークは、事前訓練されたモデルから本質的な知識を活用することで、これらの問題に対処することを目的としている。
2つのベンチマークデータセットに対する大規模な実験は、DDIPromptのSOTAパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-18T06:22:01Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
分子間相互作用予測のためのバイオKDN (Biomedical Knowledge Graph Denoising Network) を提案する。
BioKDNは、ノイズの多いリンクを学習可能な方法で識別することで、局所的な部分グラフの信頼性の高い構造を洗練する。
ターゲットの相互作用に関する関係を円滑にすることで、一貫性とロバストなセマンティクスを維持する。
論文 参考訳(メタデータ) (2023-12-09T07:08:00Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
本稿では,3方向トランスフォーマーアーキテクチャを用いて分子間情報をモデル化する手法を提案する。
分子間グラフ変換器(IGT)は、それぞれ、結合活性と結合ポーズ予測の2番目のベストに対して、最先端のアプローチを9.1%と20.5%で上回っている。
IGTはSARS-CoV-2に対して有望な薬物スクリーニング能力を示す。
論文 参考訳(メタデータ) (2021-10-14T13:28:02Z) - ACP++: Action Co-occurrence Priors for Human-Object Interaction
Detection [102.9428507180728]
ヒューマン・オブジェクト・インタラクション(HOI)検出のタスクにおける一般的な問題は、多数のHOIクラスが少数のラベル付き例しか持たないことである。
我々は、人間と物体の相互作用の間に自然の相関関係と反相関が存在することを観察した。
我々は、これらの先行知識を学習し、特に稀なクラスにおいて、より効果的な訓練に活用する手法を提案する。
論文 参考訳(メタデータ) (2021-09-09T06:02:50Z) - Learning Inter-Modal Correspondence and Phenotypes from Multi-Modal
Electronic Health Records [15.658012300789148]
本稿では,複数モーダル間の対応を表現型発見と併用して推測するcHITFを提案する。
実世界のMIMIC-IIIデータセットを用いて行った実験は、cHITFが臨床的に意味のあるモーダル間通信を効果的に推論することを示した。
論文 参考訳(メタデータ) (2020-11-12T10:30:29Z) - Drug-Drug Interaction Prediction with Wasserstein Adversarial
Autoencoder-based Knowledge Graph Embeddings [22.562175708415392]
薬物・薬物相互作用のための知識グラフ埋め込みフレームワークを提案する。
本フレームワークでは, 高品質な負のサンプルを生成するために, オートエンコーダを用いる。
判別器は、正三重項と負三重項の両方に基づいて薬物と相互作用の埋め込みを学習する。
論文 参考訳(メタデータ) (2020-04-15T21:03:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。