論文の概要: Conformal Prediction and Trustworthy AI
- arxiv url: http://arxiv.org/abs/2508.06885v1
- Date: Sat, 09 Aug 2025 08:28:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.597099
- Title: Conformal Prediction and Trustworthy AI
- Title(参考訳): コンフォーマル予測と信頼できるAI
- Authors: Anthony Bellotti, Xindi Zhao,
- Abstract要約: コンフォーマル予測器は1990年代にガマーマン、ヴォフク、研究チームによって開発され、信頼度が保証されたセット予測を提供するために開発された。
近年、彼らは人気を博し、機械学習コミュニティにおける不確実性定量化の主流の方法論となっている。
本稿では、その限界有効性を超えて、信頼に値するAIに寄与するコンフォーマル予測の可能性についてレビューする。
- 参考スコア(独自算出の注目度): 1.6574413179773761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conformal predictors are machine learning algorithms developed in the 1990's by Gammerman, Vovk, and their research team, to provide set predictions with guaranteed confidence level. Over recent years, they have grown in popularity and have become a mainstream methodology for uncertainty quantification in the machine learning community. From its beginning, there was an understanding that they enable reliable machine learning with well-calibrated uncertainty quantification. This makes them extremely beneficial for developing trustworthy AI, a topic that has also risen in interest over the past few years, in both the AI community and society more widely. In this article, we review the potential for conformal prediction to contribute to trustworthy AI beyond its marginal validity property, addressing problems such as generalization risk and AI governance. Experiments and examples are also provided to demonstrate its use as a well-calibrated predictor and for bias identification and mitigation.
- Abstract(参考訳): コンフォーマル予測(Conformal predictor)は、1990年代にGammerman、Vovk、そして彼らの研究チームが開発した機械学習アルゴリズムで、信頼度を保証したセット予測を提供する。
近年、彼らは人気を博し、機械学習コミュニティにおける不確実性定量化の主流の方法論となっている。
当初から、精度の高い不確実性定量化で信頼性の高い機械学習を可能にするという認識があった。
このことは、AIコミュニティと社会の両方において、ここ数年でさらに関心を集めてきた、信頼できるAIを開発する上で非常に有益である。
本稿では, 一般化リスクやAIガバナンスといった問題に対処しながら, 信頼に値するAIに寄与するコンフォーメーション予測の可能性について検討する。
実験と例は、よく校正された予測器としての使用と、バイアス識別と緩和のためにも提供されている。
関連論文リスト
- Human-Alignment Influences the Utility of AI-assisted Decision Making [16.732483972136418]
我々は,アライメントの程度が,AIによる意思決定の有用性に与える影響について検討する。
以上の結果から,AIによる意思決定におけるアライメントの程度と有効性との関連が示唆された。
論文 参考訳(メタデータ) (2025-01-23T19:01:47Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Trust in AI: Progress, Challenges, and Future Directions [6.724854390957174]
私たちの日常生活における人工知能(AI)システムの利用の増加は、ユーザの視点からAIにおける信頼と不信の重要性を説明してくれます。
AIにおける信頼/不信は規制官の役割を担い、この拡散のレベルを著しく制御することができる。
論文 参考訳(メタデータ) (2024-03-12T20:26:49Z) - A Diachronic Perspective on User Trust in AI under Uncertainty [52.44939679369428]
現代のNLPシステムは、しばしば未分類であり、ユーザの信頼を損なう確実な誤った予測をもたらす。
賭けゲームを用いて,信頼を損なう事象に対するユーザの信頼の進化について検討する。
論文 参考訳(メタデータ) (2023-10-20T14:41:46Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Know Your Model (KYM): Increasing Trust in AI and Machine Learning [4.93786553432578]
信頼度の各要素を分析し、最適なAI機能を確保するために活用できる20のガイドラインのセットを提供します。
このガイドラインは、信頼性が証明可能で、実証可能であること、実装に依存しないこと、あらゆる分野のあらゆるAIシステムに適用可能であることを保証する。
論文 参考訳(メタデータ) (2021-05-31T14:08:22Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。