論文の概要: Class Unbiasing for Generalization in Medical Diagnosis
- arxiv url: http://arxiv.org/abs/2508.06943v1
- Date: Sat, 09 Aug 2025 11:37:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.622094
- Title: Class Unbiasing for Generalization in Medical Diagnosis
- Title(参考訳): 医学診断における一般化のためのクラスアンビジング
- Authors: Lishi Zuo, Man-Wai Mak, Lu Yi, Youzhi Tu,
- Abstract要約: 我々は、クラス不均衡とクラス不均衡の両方を同時に緩和するクラス不偏性モデル(Cls-unbias)を訓練することを目指している。
具体的には,正のクラスと負のクラスのサンプルから,分類損失の等しく寄与するクラスワイド不等式損失を提案する。
- 参考スコア(独自算出の注目度): 25.99653730101182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical diagnosis might fail due to bias. In this work, we identified class-feature bias, which refers to models' potential reliance on features that are strongly correlated with only a subset of classes, leading to biased performance and poor generalization on other classes. We aim to train a class-unbiased model (Cls-unbias) that mitigates both class imbalance and class-feature bias simultaneously. Specifically, we propose a class-wise inequality loss which promotes equal contributions of classification loss from positive-class and negative-class samples. We propose to optimize a class-wise group distributionally robust optimization objective-a class-weighted training objective that upweights underperforming classes-to enhance the effectiveness of the inequality loss under class imbalance. Through synthetic and real-world datasets, we empirically demonstrate that class-feature bias can negatively impact model performance. Our proposed method effectively mitigates both class-feature bias and class imbalance, thereby improving the model's generalization ability.
- Abstract(参考訳): 医学的診断はバイアスによって失敗する可能性がある。
本研究では,クラスサブセットのみに強く依存する機能にモデルが依存する可能性を示すクラス特徴バイアスを同定し,性能の偏りと他のクラスへの一般化の低さに繋がった。
我々は、クラス不均衡とクラス不均衡の両方を同時に緩和するクラス不偏性モデル(Cls-unbias)を訓練することを目指している。
具体的には,正のクラスと負のクラスのサンプルから,分類損失の等しく寄与するクラスワイド不等式損失を提案する。
そこで本稿では,クラス不均衡下での不等式損失の効果を高めるために,クラス単位での集団分布的ロバストな最適化目標であるクラス重み付け学習目標を最適化することを提案する。
合成および実世界のデータセットを通して、クラス特徴バイアスがモデル性能に悪影響を及ぼすことを実証的に示す。
提案手法は,クラス特徴バイアスとクラス不均衡の両方を効果的に緩和し,モデルの一般化能力を向上させる。
関連論文リスト
- Ensemble Debiasing Across Class and Sample Levels for Fairer Prompting Accuracy [17.610305828703957]
言語モデルは、強力な数発の学習者であり、テキスト分類タスクにおいて、全体的な精度が良好である。
我々は、全体的な精度の追求は、強い階級を豊かにするだけでなく、弱い階級を育てることによってもたらされると信じている。
本論文では,文脈内学習クラス確率のフレキシブルな修正を可能にするHeaviside Step関数に基づくアンサンブルデバイアス法を提案する。
論文 参考訳(メタデータ) (2025-03-07T05:34:31Z) - Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
我々は,クラスが等しくないことを実験的に証明し,様々なデータセットにまたがる画像分類モデルにおいて,公平性の問題が顕著であることを示した。
以上の結果から,モデルでは認識が困難であるクラスに対して,予測バイアスが大きくなる傾向が示唆された。
データ拡張および表現学習アルゴリズムは、画像分類のある程度の公平性を促進することにより、全体的なパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T07:54:50Z) - Class-attribute Priors: Adapting Optimization to Heterogeneity and
Fairness Objective [54.33066660817495]
現代の分類問題は、個々のクラスにまたがって不均一性を示す。
本稿では,クラス固有の学習戦略を効果的かつ汎用的に生成するCAPを提案する。
CAPは先行技術と競合しており、その柔軟性により、バランスの取れた精度以上の公平性目標に対する明確なメリットが期待できる。
論文 参考訳(メタデータ) (2024-01-25T17:43:39Z) - Understanding the Detrimental Class-level Effects of Data Augmentation [63.1733767714073]
最適な平均精度を達成するには、ImageNetで最大20%の個々のクラスの精度を著しく損なうコストがかかる。
本稿では,DAがクラスレベルの学習力学とどのように相互作用するかを理解するためのフレームワークを提案する。
そこで本研究では, クラス条件拡張戦略により, 負の影響を受けるクラスの性能が向上することを示す。
論文 参考訳(メタデータ) (2023-12-07T18:37:43Z) - Class-Imbalanced Graph Learning without Class Rebalancing [62.1368829847041]
クラス不均衡は実世界のノード分類タスクでよく見られ、グラフ学習モデルには大きな課題がある。
本研究では、トポロジカルパラダイムからクラス不均衡バイアスの根本原因にアプローチする。
我々は,クラス再バランスを伴わずにクラス不均衡バイアスを軽減するために,軽量なトポロジカル拡張フレームワークであるBATを考案した。
論文 参考訳(メタデータ) (2023-08-27T19:01:29Z) - Learning to Adapt Classifier for Imbalanced Semi-supervised Learning [38.434729550279116]
Pseudo-labelingは、有望な半教師付き学習(SSL)パラダイムであることが証明されている。
既存の擬似ラベル法では、トレーニングデータのクラス分布が均衡していると仮定するのが一般的である。
本研究では,不均衡な半教師付きセットアップ下での擬似ラベリングについて検討する。
論文 参考訳(メタデータ) (2022-07-28T02:15:47Z) - Statistical Theory for Imbalanced Binary Classification [8.93993657323783]
最適分類性能は、これまで形式化されていなかったクラス不均衡の特定の性質に依存することを示す。
具体的には、一様クラス不均衡と呼ばれる新しいクラス不均衡のサブタイプを提案する。
これらの結果は、不均衡二項分類に対する最初の有意義な有限サンプル統計理論のいくつかを提供する。
論文 参考訳(メタデータ) (2021-07-05T03:55:43Z) - Robustness May Be at Odds with Fairness: An Empirical Study on
Class-wise Accuracy [85.20742045853738]
CNNは敵の攻撃に弱いことが広く知られている。
本稿では,対人訓練モデルのクラスワイド精度とロバスト性に関する実証的研究を提案する。
トレーニングデータセットが各クラスに同じ数のサンプルを持つ場合でも,精度と堅牢性にはクラス間差があることが判明した。
論文 参考訳(メタデータ) (2020-10-26T06:32:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。