論文の概要: BIGBOY1.2: Generating Realistic Synthetic Data for Disease Outbreak Modelling and Analytics
- arxiv url: http://arxiv.org/abs/2508.07239v1
- Date: Sun, 10 Aug 2025 08:34:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.770367
- Title: BIGBOY1.2: Generating Realistic Synthetic Data for Disease Outbreak Modelling and Analytics
- Title(参考訳): BIGBOY1.2:病気のアウトブレイクモデルと分析のためのリアルな合成データの生成
- Authors: Raunak Narwal, Syed Abbas,
- Abstract要約: 我々はBIGBOY1.2を開発した。BIGBOY1.2は、パンデミック時系列と人口レベルの軌跡を生成するオープンな合成データセットジェネレータである。
このフレームワークは、SEIRおよびSIRライクなコンパートメンタルロジック、カスタム季節性、ノイズインジェクションをサポートし、実際のレポートアーティファクトを模倣する。
- 参考スコア(独自算出の注目度): 0.9821874476902969
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Modelling disease outbreak models remains challenging due to incomplete surveillance data, noise, and limited access to standardized datasets. We have created BIGBOY1.2, an open synthetic dataset generator that creates configurable epidemic time series and population-level trajectories suitable for benchmarking modelling, forecasting, and visualisation. The framework supports SEIR and SIR-like compartmental logic, custom seasonality, and noise injection to mimic real reporting artifacts. BIGBOY1.2 can produce datasets with diverse characteristics, making it suitable for comparing traditional epidemiological models (e.g., SIR, SEIR) with modern machine learning approaches (e.g., SVM, neural networks).
- Abstract(参考訳): 不完全な監視データ、ノイズ、標準化されたデータセットへの限られたアクセスのために、病気の発生モデルをモデル化することは依然として困難である。
我々はBIGBOY1.2を開発した。BIGBOY1.2はオープンな合成データセット生成装置で、設定可能な流行時系列と人口レベルの軌道を作成し、モデリング、予測、可視化に適している。
このフレームワークは、SEIRおよびSIRライクなコンパートメンタルロジック、カスタム季節性、ノイズインジェクションをサポートし、実際のレポートアーティファクトを模倣する。
BIGBOY1.2は多様な特徴を持つデータセットを生成し、従来の疫学モデル(例えば、SIR、SEIR)と現代の機械学習アプローチ(例えば、SVM、ニューラルネットワーク)を比較するのに適している。
関連論文リスト
- Spatial Reasoning with Denoising Models [49.83744014336816]
本稿では,連続変数の集合に対する推論を行うためのフレームワークを提案する。
初めて、その生成順序をデノナイジングネットワーク自体によって予測できる。
これらの結果から,特定の推論タスクの精度を1%から50%に向上させることができる。
論文 参考訳(メタデータ) (2025-02-28T14:08:30Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
混合データセットに対する生成モデルの訓練が与える影響について検討する。
まず、初期生成モデルがデータ分布を十分に近似する条件下で反復学習の安定性を実証する。
我々は、正規化フローと最先端拡散モデルを繰り返し訓練することにより、合成画像と自然画像の両方に関する我々の理論を実証的に検証する。
論文 参考訳(メタデータ) (2023-09-30T16:41:04Z) - Can segmentation models be trained with fully synthetically generated
data? [0.39577682622066246]
BrainSPADEは、合成拡散ベースのラベルジェネレータとセマンティックイメージジェネレータを組み合わせたモデルである。
本モデルでは, 興味の病理の有無に関わらず, オンデマンドで完全合成脳ラベルを作成でき, 任意のガイド型MRI画像を生成することができる。
brainSPADE合成データは、実際のデータでトレーニングされたモデルに匹敵するパフォーマンスでセグメンテーションモデルをトレーニングするために使用できる。
論文 参考訳(メタデータ) (2022-09-17T05:24:04Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Time-series Transformer Generative Adversarial Networks [5.254093731341154]
本稿では,時系列データに特化して生じる制約について考察し,合成時系列を生成するモデルを提案する。
合成時系列データを生成するモデルには,(1)実列の段階的条件分布を捉えること,(2)実列全体の結合分布を忠実にモデル化すること,の2つの目的がある。
TsT-GANは、Transformerアーキテクチャを活用してデシラタを満足させ、その性能を5つのデータセット上の5つの最先端モデルと比較するフレームワークである。
論文 参考訳(メタデータ) (2022-05-23T10:04:21Z) - Unifying Epidemic Models with Mixtures [28.771032745045428]
新型コロナウイルスのパンデミックは、感染モデルに対する強固な理解の必要性を強調している。
本稿では2つのアプローチをブリッジする単純な混合モデルを提案する。
モデルは非機械的であるが、ネットワーク化されたSIRフレームワークに基づくプロセスの自然な結果として現れることを示す。
論文 参考訳(メタデータ) (2022-01-07T19:42:05Z) - Discrepancies in Epidemiological Modeling of Aggregated Heterogeneous
Data [1.433758865948252]
本研究では, 複雑なシステムに直面すると, 伝染率などの疫学パラメータを推定するための最先端モデルが不適切であることを示す。
複数の流行から発生した入射曲線を組み合わせることで、複雑な発生シナリオを3つ生成する。
このベイズ推定フレームワークにおける2つのデータ生成モデルを評価する。
論文 参考訳(メタデータ) (2021-06-20T03:41:19Z) - Digital twins based on bidirectional LSTM and GAN for modelling COVID-19 [8.406968279478347]
新型コロナウイルスの感染が世界中に広がり、1億人以上が感染し、220万人以上が死亡した。
疫学モデルの研究は、このような病気がどのように広まるかをよりよく理解するために、緊急に必要である。
機械学習技術の最近の進歩は、計算コストの削減で複雑なダイナミクスを学習し、予測する能力を持つニューラルネットワークを生み出している。
論文 参考訳(メタデータ) (2021-02-03T11:54:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。