論文の概要: Health Care Waste Classification Using Deep Learning Aligned with Nepal's Bin Color Guidelines
- arxiv url: http://arxiv.org/abs/2508.07450v1
- Date: Sun, 10 Aug 2025 18:25:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.862081
- Title: Health Care Waste Classification Using Deep Learning Aligned with Nepal's Bin Color Guidelines
- Title(参考訳): ネパールのビンカラーガイドラインに基づく深層学習を用いた医療廃棄物の分類
- Authors: Suman Kunwar, Prabesh Rai,
- Abstract要約: 本研究では,ResNeXt-50,EfficientNet-B0,MobileNetV3-S,YOLOv8-n,YOLOv5-sの美術廃棄物分類モデルの現状をベンチマークする。
最高のパフォーマンスモデル(YOLOv5-s)は、ネパールのHCW管理標準を使用して、マップされたビンカラーでWebにデプロイされた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The increasing number of Health Care facilities in Nepal has also added up the challenges on managing health care waste (HCW). Improper segregation and disposal of HCW leads to the contamination, spreading of infectious diseases and puts a risk of waste handlers. This study benchmarks the state of the art waste classification models: ResNeXt-50, EfficientNet-B0, MobileNetV3-S, YOLOv8-n and YOLOv5-s using Stratified K-fold techniques where we use 5 folds on combined HCW data, and found that the YOLOv5-s achieved higher of 95.06% accuracy but fell short few milliseconds in inference speed with YOLOv8-n model. The EfficientNet-B0 showed promising results of 93.22% accuracy but took the highest inference time. A repetitive ANOVA was performed to see statistical significance and the best performing model (YOLOv5-s) was deployed to the web with mapped bin color using Nepal's HCW management standards for public usage. Further work on the data was suggested along with localized context.
- Abstract(参考訳): ネパールの医療施設の増加は、医療廃棄物管理(HCW)の課題も増している。
HCWの不適切な分離と廃棄は汚染を招き、伝染病を拡散させ、廃棄物処理者のリスクを負う。
ResNeXt-50, EfficientNet-B0, MobileNetV3-S, YOLOv8-n and YOLOv5-s using Stratified K-fold technique where we using 5 folds on combination HCW data, and found that YOLOv5-s achieved higher 95.06% accuracy, but less few milliseconds inference speed with YOLOv8-n model。
EfficientNet-B0は93.22%の精度で有望な結果を示したが、推論時間が最も長い。
また, ネパールのHCW管理基準を用いて, 連続的なANOVAによる統計的意義の検証を行い, 最高性能モデル (YOLOv5-s) をウェブ上に展開した。
データに関するさらなる研究は、ローカライズされたコンテキストと共に提案された。
関連論文リスト
- A Lightweight and Robust Framework for Real-Time Colorectal Polyp Detection Using LOF-Based Preprocessing and YOLO-v11n [0.3495246564946556]
本研究では,ポリプ検出のための新しい,軽量で効率的なフレームワークを提案する。
ノイズの多いデータをフィルタリングするLocal Outlier Factorアルゴリズムと、YOLO-v11nディープラーニングモデルを組み合わせる。
従来のYOLO法と比較して精度と効率が向上した。
論文 参考訳(メタデータ) (2025-07-14T23:36:54Z) - Plastic Waste Classification Using Deep Learning: Insights from the WaDaBa Dataset [0.0]
本研究では、畳み込みニューラルネットワーク(CNN)とYOLO(You Only Look Once)のようなオブジェクト検出モデルに焦点を当てる。
その結果, YOLO-11mの精度は98.03%, mAP50(0.990)で, YOLO-11nも同様だがmAP50(0.992)であった。
YOLO-10nのような軽量モデルはより高速に訓練されたが精度は低く、MobileNet V2は優れた性能(97.12%の精度)を示したが、オブジェクト検出では不足していた。
論文 参考訳(メタデータ) (2024-12-28T18:00:52Z) - CRTRE: Causal Rule Generation with Target Trial Emulation Framework [47.2836994469923]
ターゲットトライアルエミュレーションフレームワーク(CRTRE)を用いた因果ルール生成という新しい手法を提案する。
CRTREは、アソシエーションルールの因果効果を推定するためにランダム化トライアル設計原則を適用している。
次に、病気発症予測などの下流アプリケーションにそのような関連ルールを組み込む。
論文 参考訳(メタデータ) (2024-11-10T02:40:06Z) - Phikon-v2, A large and public feature extractor for biomarker prediction [42.52549987351643]
我々は、DINOv2を用いて視覚変換器を訓練し、このモデルの1つのイテレーションを公開して、Phikon-v2と呼ばれるさらなる実験を行う。
Phikon-v2は、公開されている組織学のスライドをトレーニングしながら、以前リリースしたモデル(Phikon)を上回り、プロプライエタリなデータでトレーニングされた他の病理学基盤モデル(FM)と同等に動作します。
論文 参考訳(メタデータ) (2024-09-13T20:12:29Z) - Quantizing YOLOv7: A Comprehensive Study [0.0]
本稿では,最先端のYOLOv7モデルの事前学習重みに対する様々な量子化スキームの有効性について検討する。
その結果、4ビット量子化と異なる粒度の組合せを組み合わせることで、均一な量子化と非一様量子化のための3.92倍と3.86倍のメモリ節約が得られることがわかった。
論文 参考訳(メタデータ) (2024-07-06T03:23:04Z) - High-Performance Fine Defect Detection in Artificial Leather Using Dual Feature Pool Object Detection [40.14938518877818]
人工皮革の微細欠陥の特徴から, DFP, IFF, AMP, EOSの4つの革新的な構造が設計された。
これらの進歩により、YOLODという高性能な人工皮革微細欠陥検出モデルが提案された。
YOLODは人工皮革欠陥データセットに優れた性能を示し、YOLOv5と比較してAP_50の11.7%から13.5%の顕著な増加を達成した。
YOLODはまた、一般のMS-COCOデータセットでも顕著なパフォーマンスを示しており、YOLOv5と比較してAPでは0.4%から2.6%増加した。
論文 参考訳(メタデータ) (2023-07-31T15:18:54Z) - Comparative analysis of deep learning approaches for AgNOR-stained
cytology samples interpretation [52.77024349608834]
本稿では, 深層学習手法を用いて, 好気性ヌクレオラオーガナイザ領域 (AgNOR) 染色スライダを解析する方法を提案する。
以上の結果から,バックボーンとしてResNet-18やResNet-34を用いたU-Netを用いたセマンティックセマンティックセマンティックセマンティクスは類似した結果を示す。
最も優れたモデルは、それぞれ0.83、0.92、0.99の核、クラスター、衛星のIoUを示す。
論文 参考訳(メタデータ) (2022-10-19T15:15:32Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images
and Deep Convolutional Neural Networks [0.0]
中国発祥の新型コロナウイルス(COVID-19)は、他国に住む人々の間で急速に広まっている。
新型コロナウイルス(COVID-19)検査キットは毎日増えているため、病院では限られている。
5つの事前訓練された畳み込みニューラルネットワークに基づくモデルが、胸部X線写真を用いた新型コロナウイルス感染者の検出のために提案されている。
論文 参考訳(メタデータ) (2020-03-24T13:50:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。