論文の概要: Plastic Waste Classification Using Deep Learning: Insights from the WaDaBa Dataset
- arxiv url: http://arxiv.org/abs/2412.20232v1
- Date: Sat, 28 Dec 2024 18:00:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:06:27.995412
- Title: Plastic Waste Classification Using Deep Learning: Insights from the WaDaBa Dataset
- Title(参考訳): 深層学習を用いたプラスチック廃棄物の分類:WaDaBaデータセットからの考察
- Authors: Suman Kunwar, Banji Raphael Owabumoye, Abayomi Simeon Alade,
- Abstract要約: 本研究では、畳み込みニューラルネットワーク(CNN)とYOLO(You Only Look Once)のようなオブジェクト検出モデルに焦点を当てる。
その結果, YOLO-11mの精度は98.03%, mAP50(0.990)で, YOLO-11nも同様だがmAP50(0.992)であった。
YOLO-10nのような軽量モデルはより高速に訓練されたが精度は低く、MobileNet V2は優れた性能(97.12%の精度)を示したが、オブジェクト検出では不足していた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: With the increasing use of plastic, the challenges associated with managing plastic waste have become more challenging, emphasizing the need of effective solutions for classification and recycling. This study explores the potential of deep learning, focusing on convolutional neural networks (CNNs) and object detection models like YOLO (You Only Look Once), to tackle this issue using the WaDaBa dataset. The study shows that YOLO- 11m achieved highest accuracy (98.03%) and mAP50 (0.990), with YOLO-11n performing similarly but highest mAP50(0.992). Lightweight models like YOLO-10n trained faster but with lower accuracy, whereas MobileNet V2 showed impressive performance (97.12% accuracy) but fell short in object detection. Our study highlights the potential of deep learning models in transforming how we classify plastic waste, with YOLO models proving to be the most effective. By balancing accuracy and computational efficiency, these models can help to create scalable, impactful solutions in waste management and recycling.
- Abstract(参考訳): プラスチックの使用の増加に伴い、プラスチック廃棄物の管理に関する課題はより困難になり、分類とリサイクルに有効なソリューションの必要性を強調している。
本研究では,畳み込みニューラルネットワーク(CNN)とYOLO(You Only Look Once)のようなオブジェクト検出モデルに着目し,この問題にWaDaBaデータセットを用いて対処する深層学習の可能性を検討する。
その結果, YOLO-11mの精度は98.03%, mAP50 (0.990) であり, YOLO-11nも同様だがmAP50 (0.992) が最高であった。
YOLO-10nのような軽量モデルはより高速に訓練されたが精度は低く、MobileNet V2は優れた性能(97.12%の精度)を示したが、オブジェクト検出では不足していた。
我々の研究は、プラスチック廃棄物の分類方法を変えるためのディープラーニングモデルの可能性を強調し、YOLOモデルは最も効果的であることが証明された。
精度と計算効率のバランスをとることで、これらのモデルは、廃棄物管理とリサイクルにおいてスケーラブルでインパクトのあるソリューションを作成するのに役立ちます。
関連論文リスト
- Evaluating the Evolution of YOLO (You Only Look Once) Models: A Comprehensive Benchmark Study of YOLO11 and Its Predecessors [0.0]
本研究では,YOLOv3から最新のYOLO11まで,YOLO(You Only Look Once)アルゴリズムのベンチマーク解析を行った。
トラフィックシグネチャ(さまざまなオブジェクトサイズを持つ)、アフリカ野生生物(多彩なアスペクト比と画像当たりのオブジェクトの少なくとも1つのインスタンス)、および船と船舶(単一のクラスの小さなオブジェクトを持つ)の3つの多様なデータセットでパフォーマンスを評価する。
論文 参考訳(メタデータ) (2024-10-31T20:45:00Z) - Optimizing YOLO Architectures for Optimal Road Damage Detection and Classification: A Comparative Study from YOLOv7 to YOLOv10 [0.0]
本稿では,ディープラーニングモデルを用いた道路損傷検出のための総合ワークフローを提案する。
ハードウェアの制約を満たすため、大きな画像が収穫され、軽量モデルが利用される。
提案手法では,コーディネートアテンションレイヤを備えたカスタムYOLOv7モデルや,Tiny YOLOv7モデルなど,複数のモデルアーキテクチャを採用している。
論文 参考訳(メタデータ) (2024-10-10T22:55:12Z) - EFA-YOLO: An Efficient Feature Attention Model for Fire and Flame Detection [3.334973867478745]
EAConv(Efficient Attention Downsampling)とEADown(Efficient Attention Downsampling)の2つの重要なモジュールを提案する。
これら2つのモジュールに基づいて,効率的な軽量火炎検出モデル EFA-YOLO (Efficient Feature Attention YOLO) を設計する。
EFA-YOLOは検出精度(mAP)と推論速度を著しく向上させ、モデルパラメータの量を94.6削減し、推論速度を88倍改善した。
論文 参考訳(メタデータ) (2024-09-19T10:20:07Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
リアルタイムオブジェクト検出の分野では,YOLOが主流のパラダイムとして浮上している。
非最大抑圧(NMS)による処理後ハマーによるYOLOのエンドツーエンドデプロイメントへの依存。
YOLOの総合的効率-精度駆動型モデル設計戦略を紹介する。
論文 参考訳(メタデータ) (2024-05-23T11:44:29Z) - Learning from History: Task-agnostic Model Contrastive Learning for
Image Restoration [79.04007257606862]
本稿では,対象モデル自体から負のサンプルを動的に生成する「歴史からの学習」という革新的な手法を提案する。
我々のアプローチはMCLIR(Model Contrastive Learning for Image Restoration)と呼ばれ、遅延モデルを負のモデルとして再定義し、多様な画像復元タスクと互換性を持たせる。
論文 参考訳(メタデータ) (2023-09-12T07:50:54Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
YOLO-MSと呼ばれる効率的かつ高性能な物体検出器を提供する。
私たちは、他の大規模なデータセットに頼ることなく、MS COCOデータセット上でYOLO-MSをスクラッチからトレーニングします。
私たちの作業は、他のYOLOモデルのプラグイン・アンド・プレイモジュールとしても機能します。
論文 参考訳(メタデータ) (2023-08-10T10:12:27Z) - PLASTIC: Improving Input and Label Plasticity for Sample Efficient
Reinforcement Learning [54.409634256153154]
強化学習(RL)では, サンプル効率の向上が重要である。
原則として、非政治的なRLアルゴリズムは、環境相互作用毎に複数の更新を可能にすることで、サンプル効率を向上させることができる。
本研究は, この現象の原因を, 塑性を2つの側面に分けて検討した。
論文 参考訳(メタデータ) (2023-06-19T06:14:51Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Evaluation of YOLO Models with Sliced Inference for Small Object
Detection [0.0]
この研究は、小さなオブジェクト検出のためにYOLOv5とYOLOXモデルをベンチマークすることを目的としている。
スライスされた微調整とスライスされた推論が組み合わさって全てのモデルに大幅な改善をもたらした。
論文 参考訳(メタデータ) (2022-03-09T15:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。