論文の概要: Towards Unveiling Predictive Uncertainty Vulnerabilities in the Context of the Right to Be Forgotten
- arxiv url: http://arxiv.org/abs/2508.07458v1
- Date: Sun, 10 Aug 2025 19:08:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.866187
- Title: Towards Unveiling Predictive Uncertainty Vulnerabilities in the Context of the Right to Be Forgotten
- Title(参考訳): 忘れられる権利の文脈における予測的不確かさの回避に向けて
- Authors: Wei Qian, Chenxu Zhao, Yangyi Li, Wenqian Ye, Mengdi Huai,
- Abstract要約: 予測不確実性に対する悪質な未学習攻撃の新たなクラスを提案する。
我々の実験は、我々の攻撃が従来の攻撃よりも予測の不確実性を操作するのに効果的であることを示している。
- 参考スコア(独自算出の注目度): 16.03102654663785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, various uncertainty quantification methods have been proposed to provide certainty and probability estimates for deep learning models' label predictions. Meanwhile, with the growing demand for the right to be forgotten, machine unlearning has been extensively studied as a means to remove the impact of requested sensitive data from a pre-trained model without retraining the model from scratch. However, the vulnerabilities of such generated predictive uncertainties with regard to dedicated malicious unlearning attacks remain unexplored. To bridge this gap, for the first time, we propose a new class of malicious unlearning attacks against predictive uncertainties, where the adversary aims to cause the desired manipulations of specific predictive uncertainty results. We also design novel optimization frameworks for our attacks and conduct extensive experiments, including black-box scenarios. Notably, our extensive experiments show that our attacks are more effective in manipulating predictive uncertainties than traditional attacks that focus on label misclassifications, and existing defenses against conventional attacks are ineffective against our attacks.
- Abstract(参考訳): 現在、深層学習モデルのラベル予測に対する確実性および確率推定を行うために、様々な不確実性定量化手法が提案されている。
一方, 忘れられる権利の需要が高まる中で, マシン・アンラーニングは, スクラッチからモデルを再学習することなく, 事前訓練されたモデルから要求された機密データの影響を除去する手段として, 広範囲に研究されてきた。
しかし、そのような予測的不確実性の脆弱性は未発見のままである。
このギャップを埋めるために、我々は初めて、予測不確実性に対する悪意ある未学習攻撃の新たなクラスを提案し、敵は特定の予測不確実性の操作を望ましいものにすることを目的としている。
また、攻撃のための新しい最適化フレームワークを設計し、ブラックボックスシナリオを含む広範な実験を行う。
特に、我々の大規模な実験は、ラベルの誤分類に焦点を当てた従来の攻撃よりも予測の不確実性を操作するのに、我々の攻撃が効果的であることを示し、従来の攻撃に対する既存の防御は、我々の攻撃に対して効果がない。
関連論文リスト
- Preliminary Investigation into Uncertainty-Aware Attack Stage Classification [81.28215542218724]
この研究は、不確実性の下での攻撃段階推論の問題に対処する。
Evidential Deep Learning (EDL) に基づく分類手法を提案し、ディリクレ分布のパラメータを可能な段階に出力することで予測の不確実性をモデル化する。
シミュレーション環境における予備実験により,提案モデルが精度良く攻撃の段階を推定できることが実証された。
論文 参考訳(メタデータ) (2025-08-01T06:58:00Z) - Explainer-guided Targeted Adversarial Attacks against Binary Code Similarity Detection Models [12.524811181751577]
我々は,BCSDモデルに対する敵攻撃に対する新たな最適化を提案する。
特に,攻撃目標は,モデル予測を特定の範囲に制限することである。
我々の攻撃は、モデル決定境界の解釈において、ブラックボックス、モデルに依存しない説明器の優れた能力を活用する。
論文 参考訳(メタデータ) (2025-06-05T08:29:19Z) - On Transfer-based Universal Attacks in Pure Black-box Setting [94.92884394009288]
攻撃性能における対象モデルデータの事前知識とクラス数の役割について検討する。
また、分析に基づいていくつかの興味深い洞察を与え、先行が伝達可能性スコアの過大評価を引き起こすことを示した。
論文 参考訳(メタデータ) (2025-04-11T10:41:20Z) - On the Robustness of Adversarial Training Against Uncertainty Attacks [9.180552487186485]
学習問題において、手元のタスクに固有のノイズは、ある程度の不確実性なく推論する可能性を妨げている。
本研究は、敵の例、すなわち、誤分類を引き起こす注意深く摂動されたサンプルに対する防御が、より安全で信頼性の高い不確実性推定を保証していることを実証的および理論的に明らかにする。
我々は,CIFAR-10およびImageNetデータセット上で,公開ベンチマークのRobustBenchから,複数の逆ロバストモデルを評価する。
論文 参考訳(メタデータ) (2024-10-29T11:12:44Z) - Adversarial Attacks Against Uncertainty Quantification [10.655660123083607]
この研究は、攻撃者が依然として不確実性推定を操作することに興味を持つ異なる敵シナリオに焦点を当てる。
特に、アウトプットが下流モジュールや人間のオペレータによって消費される場合、機械学習モデルの使用を損なうことが目標である。
論文 参考訳(メタデータ) (2023-09-19T12:54:09Z) - Adversarial Backdoor Attack by Naturalistic Data Poisoning on Trajectory
Prediction in Autonomous Driving [18.72382517467458]
本稿では,軌道予測モデルに対する新たな逆バックドア攻撃を提案する。
我々の攻撃は、自然主義的、従って、新しい2段階のアプローチで作られた毒のサンプルを盗むことによって、訓練時に被害者に影響を及ぼす。
提案手法は,予測モデルの性能を著しく損なうおそれがあり,攻撃効果が高いことを示す。
論文 参考訳(メタデータ) (2023-06-27T19:15:06Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z) - On the Robustness of Random Forest Against Untargeted Data Poisoning: An
Ensemble-Based Approach [42.81632484264218]
機械学習モデルでは、トレーニングセット(中毒)の分画の摂動が、モデルの精度を著しく損なう可能性がある。
本研究の目的は、ランダムな森林を標的のない無作為な毒殺攻撃から保護する、新しいハッシュベースのアンサンブルアプローチを実現することである。
論文 参考訳(メタデータ) (2022-09-28T11:41:38Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
我々は、モデル損失関数の影響関数を利用して、予測信頼区間のジャックニフェ(または、アウト・ワン・アウト)推定器を構築する頻繁な手順を開発する。
1)および(2)を満たすDJは、幅広いディープラーニングモデルに適用可能であり、実装が容易であり、モデルトレーニングに干渉したり、精度を妥協したりすることなく、ポストホックな方法で適用することができる。
論文 参考訳(メタデータ) (2020-06-29T13:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。