論文の概要: IPBA: Imperceptible Perturbation Backdoor Attack in Federated Self-Supervised Learning
- arxiv url: http://arxiv.org/abs/2508.08031v1
- Date: Mon, 11 Aug 2025 14:36:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:29.145417
- Title: IPBA: Imperceptible Perturbation Backdoor Attack in Federated Self-Supervised Learning
- Title(参考訳): IPBA:フェデレーション・セルフ・スーパーバイザード・ラーニングにおける知覚不能な妨害バックドア攻撃
- Authors: Jiayao Wang, Yang Song, Zhendong Zhao, Jiale Zhang, Qilin Wu, Junwu Zhu, Dongfang Zhao,
- Abstract要約: フェデレート自己教師学習(FSSL)は、分散モデリングとラベルなし表現学習の利点を組み合わせたものである。
研究によると、FSSLはバックドア攻撃に弱いままである。
我々はIPBAと呼ばれるFSSLに対する非受容的で効果的なバックドア攻撃手法を提案する。
- 参考スコア(独自算出の注目度): 13.337697403537488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated self-supervised learning (FSSL) combines the advantages of decentralized modeling and unlabeled representation learning, serving as a cutting-edge paradigm with strong potential for scalability and privacy preservation. Although FSSL has garnered increasing attention, research indicates that it remains vulnerable to backdoor attacks. Existing methods generally rely on visually obvious triggers, which makes it difficult to meet the requirements for stealth and practicality in real-world deployment. In this paper, we propose an imperceptible and effective backdoor attack method against FSSL, called IPBA. Our empirical study reveals that existing imperceptible triggers face a series of challenges in FSSL, particularly limited transferability, feature entanglement with augmented samples, and out-of-distribution properties. These issues collectively undermine the effectiveness and stealthiness of traditional backdoor attacks in FSSL. To overcome these challenges, IPBA decouples the feature distributions of backdoor and augmented samples, and introduces Sliced-Wasserstein distance to mitigate the out-of-distribution properties of backdoor samples, thereby optimizing the trigger generation process. Our experimental results on several FSSL scenarios and datasets show that IPBA significantly outperforms existing backdoor attack methods in performance and exhibits strong robustness under various defense mechanisms.
- Abstract(参考訳): フェデレーション型自己教師学習(FSSL)は、分散モデリングとラベルなし表現学習の利点を組み合わせて、スケーラビリティとプライバシ保護の強力な可能性を持つ最先端パラダイムとして機能する。
FSSLは注目度が高まっているが、バックドア攻撃に対して脆弱なままであることを示している。
既存の手法は一般的に視覚的に明らかなトリガーに依存しており、現実のデプロイメントにおいてステルスと実践性の要件を満たすことは困難である。
本稿では,IPBAと呼ばれるFSSLに対する非受容かつ効果的なバックドア攻撃手法を提案する。
我々の実証研究は、既存の知覚不可能なトリガーが、FSSL、特に制限された転送可能性、強化されたサンプルとのフィーチャの絡み合い、配布外特性など、一連の課題に直面していることを明らかにしている。
これらの問題は全体として、FSSLにおける従来のバックドア攻撃の有効性とステルス性を損なう。
これらの課題を克服するため、IPBAはバックドアと増補サンプルの特徴分布を分離し、バックドアサンプルのアウト・オブ・ディストリビューション特性を軽減するためにスライス・ワッサースタイン距離を導入し、トリガ生成プロセスを最適化する。
いくつかのFSSLシナリオとデータセットの実験結果から,IPBAは既存のバックドアアタック手法よりも優れた性能を示し,様々な防御機構の下で強靭性を示す。
関連論文リスト
- ICLShield: Exploring and Mitigating In-Context Learning Backdoor Attacks [61.06621533874629]
In-context Learning (ICL)は、大規模言語モデル(LLM)において顕著な成功を収めた。
本稿では,LLMがタスク関連潜伏概念とバックドア関連潜伏概念の両方を同時に学習する,という二重学習仮説を初めて提案する。
そこで本研究では,概念選好比を動的に調整する防衛機構であるICLShieldを提案する。
論文 参考訳(メタデータ) (2025-07-02T03:09:20Z) - SPA: Towards More Stealth and Persistent Backdoor Attacks in Federated Learning [10.924427077035915]
フェデレートラーニング(FL)は、プライバシ保護のための分散機械学習の主要なパラダイムとして登場したが、FLの分散特性にはユニークなセキュリティ上の課題が伴っている。
特徴空間アライメントを活用することによって従来のアプローチから離れるSPAという,斬新でステルス的なバックドアアタックフレームワークを提案する。
本研究は,FLにおけるバックドア脅威の高度化に緊急注意を喚起し,高度な機能レベル防衛技術の必要性を強調した。
論文 参考訳(メタデータ) (2025-06-26T01:33:14Z) - Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
Celtiberoは, 対向操作に対する強靭性を高めるため, 層状アグリゲーションを統合した新しい防御機構である。
セルティベロは、標的外および標的標的の毒殺攻撃において、最小攻撃成功率(ASR)を維持しつつ、常に高い主タスク精度(MTA)を達成することを実証した。
論文 参考訳(メタデータ) (2024-08-26T12:54:00Z) - GANcrop: A Contrastive Defense Against Backdoor Attacks in Federated Learning [1.9632700283749582]
本稿では,GANcrop という,協調学習におけるバックドア攻撃に対する防御機構について紹介する。
実験的には、特に非IIDシナリオにおいて、ガンクロップはバックドア攻撃に対して効果的に保護されていることが示されている。
論文 参考訳(メタデータ) (2024-05-31T09:33:16Z) - EmInspector: Combating Backdoor Attacks in Federated Self-Supervised Learning Through Embedding Inspection [53.25863925815954]
フェデレートされた自己教師付き学習(FSSL)は、クライアントの膨大な量の未ラベルデータの利用を可能にする、有望なパラダイムとして登場した。
FSSLはアドバンテージを提供するが、バックドア攻撃に対する感受性は調査されていない。
ローカルモデルの埋め込み空間を検査し,悪意のあるクライアントを検知する埋め込み検査器(EmInspector)を提案する。
論文 参考訳(メタデータ) (2024-05-21T06:14:49Z) - Let's Focus: Focused Backdoor Attack against Federated Transfer Learning [12.68970864847173]
フェデレート・トランスファー・ラーニング(Federated Transfer Learning, FTL)は、フェデレート・ラーニングの最も一般的なバリエーションである。
本稿では,この興味深いフェデレーション学習シナリオを検証し,脆弱性を特定して活用する。
提案した攻撃は、FTLのフェデレートラーニングフェーズにおいて、クライアントの1つによって実行される。
論文 参考訳(メタデータ) (2024-04-30T10:11:44Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - CRFL: Certifiably Robust Federated Learning against Backdoor Attacks [59.61565692464579]
本稿では,第1の汎用フレームワークであるCertifiably Robust Federated Learning (CRFL) を用いて,バックドアに対する堅牢なFLモデルをトレーニングする。
提案手法は, モデルパラメータのクリッピングと平滑化を利用して大域的モデル平滑化を制御する。
論文 参考訳(メタデータ) (2021-06-15T16:50:54Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
データの不均一性は、フェデレートラーニングにおける重要な特徴の1つとして認識されているが、しばしば敵対的攻撃に対する堅牢性のレンズで見過ごされる。
本稿では, 複合学習におけるバックドア攻撃の影響を, 総合的な実験を通じて評価し, 理解することを目的とした。
論文 参考訳(メタデータ) (2021-02-01T06:06:21Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。