論文の概要: Learned Regularization for Microwave Tomography
- arxiv url: http://arxiv.org/abs/2508.08114v1
- Date: Mon, 11 Aug 2025 15:54:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:29.18442
- Title: Learned Regularization for Microwave Tomography
- Title(参考訳): マイクロ波トモグラフィのための学習規則化
- Authors: Bowen Tong, Hao Chen, Shaorui Guo, Dong Liu,
- Abstract要約: 単段拡散正規化(Single-Step Diffusion Regularization、SSD-Reg)は、拡散先行を反復的再構成プロセスに埋め込む新しいアプローチである。
SSD-Regは、制御物理学と構造の詳細の両方に忠実さを維持している。
機能的画像再構成に固有の不備に対処するための、柔軟で効果的なソリューションを提供する。
- 参考スコア(独自算出の注目度): 7.792752191078406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Microwave Tomography (MWT) aims to reconstruct the dielectric properties of tissues from measured scattered electromagnetic fields. This inverse problem is highly nonlinear and ill-posed, posing significant challenges for conventional optimization-based methods, which, despite being grounded in physical models, often fail to recover fine structural details. Recent deep learning strategies, including end-to-end and post-processing networks, have improved reconstruction quality but typically require large paired training datasets and may struggle to generalize. To overcome these limitations, we propose a physics-informed hybrid framework that integrates diffusion models as learned regularization within a data-consistency-driven variational scheme. Specifically, we introduce Single-Step Diffusion Regularization (SSD-Reg), a novel approach that embeds diffusion priors into the iterative reconstruction process, enabling the recovery of complex anatomical structures without the need for paired data. SSD-Reg maintains fidelity to both the governing physics and learned structural distributions, improving accuracy, stability, and robustness. Extensive experiments demonstrate that SSD-Reg, implemented as a Plug-and-Play (PnP) module, provides a flexible and effective solution for tackling the ill-posedness inherent in functional image reconstruction.
- Abstract(参考訳): マイクロ波トモグラフィ(MWT)は、測定された散乱電磁場から組織の誘電特性を再構築することを目的としている。
この逆問題は非常に非線形で不適切であり、物理モデルに基礎を置いているにもかかわらず、しばしば微細な構造的詳細を回復できないような、従来の最適化に基づく手法にとって重要な課題となっている。
エンドツーエンドと後処理ネットワークを含む最近のディープラーニング戦略は、再構築品質を改善したが、通常は大規模なペアトレーニングデータセットを必要とし、一般化に苦労する可能性がある。
これらの制約を克服するために、データ一貫性駆動の変動型スキームにおいて、拡散モデルを学習正規化として統合する物理インフォームドハイブリッドフレームワークを提案する。
具体的には,単段階拡散正規化(SSD-Reg)を導入し,拡散前処理を反復的再構成プロセスに組み込むことで,ペアデータを必要としない複雑な解剖構造を復元する手法を提案する。
SSD-Regは、制御物理学と学習された構造分布の両方に対する忠実さを維持し、精度、安定性、堅牢性を改善している。
SSD-RegはPlug-and-Play(PnP)モジュールとして実装されており、機能的イメージ再構成に固有の不備に対処するための柔軟で効果的なソリューションを提供する。
関連論文リスト
- A Residual Guided strategy with Generative Adversarial Networks in training Physics-Informed Transformer Networks [8.614387766858496]
本稿では,GAN(Generative Adrative Network)を用いた物理入力変換器の残留指導戦略を提案する。
我々のフレームワークはトランスフォーマーを統合し、自己回帰処理によって時間的相関を本質的にキャプチャし、残差認識GANと組み合わせる。
アレン=カーン=ゴルドン方程式とナヴィエ=ストークス方程式の実験は、ベースライン法と比較して3桁の相対的なMSEの減少を示す。
論文 参考訳(メタデータ) (2025-07-15T03:45:42Z) - AlphaFold Database Debiasing for Robust Inverse Folding [58.792020809180336]
Debiasing Structure AutoEncoder (DeSAE)を導入し、故意に破損したバックボーンジオメトリからネイティブライクなコンフォーメーションを再構築することを学ぶ。
推測において、DeSAEをAFDB構造に適用すると、逆折り畳み性能を著しく向上する偏りのある構造が生成される。
論文 参考訳(メタデータ) (2025-06-10T02:25:31Z) - Weight Spectra Induced Efficient Model Adaptation [54.8615621415845]
微調整された大規模な基礎モデルは、計算コストを禁ずる。
微調整が最上位特異値を大きく増幅する一方で,残りはほとんど無傷であることを示す。
本稿では,トップ特異方向の学習可能な再スケーリングを利用する新しい手法を提案する。
論文 参考訳(メタデータ) (2025-05-29T05:03:29Z) - Restoration Score Distillation: From Corrupted Diffusion Pretraining to One-Step High-Quality Generation [82.39763984380625]
Score Distillation (DSD) の原理的一般化である textitRestoration Score Distillation (RSD) を提案する。
RSDは、ぼやけた画像、不完全画像、低解像度画像など、広範囲の汚職タイプに対応している。
自然と科学の両方のデータセットの様々な復元作業において、教師モデルを一貫して上回っている。
論文 参考訳(メタデータ) (2025-05-19T17:21:03Z) - SDEIT: Semantic-Driven Electrical Impedance Tomography [7.872153285062159]
SDEITはStable Diffusion 3.5をEITに統合する新しい意味駆動型フレームワークである。
暗黙的ニューラル表現(INR)ネットワークとプラグアンドプレイ最適化スキームを結合することにより、SDEITは構造的一貫性を改善し、詳細を回復する。
この研究は、マルチモーダル前処理をEITのような不測の逆問題に統合するための新しい経路を開く。
論文 参考訳(メタデータ) (2025-04-05T14:08:58Z) - Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
大規模言語モデル(LLM)は、自然言語処理タスク全体で強力なパフォーマンスを示すが、デプロイメント用に修正された場合、大幅なパフォーマンス低下を経験する。
この現象をモデル出血(パラメータ変更とアーキテクチャ変更によるパフォーマンス低下)と定義する。
論文 参考訳(メタデータ) (2025-03-31T10:16:03Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Diff-INR: Generative Regularization for Electrical Impedance Tomography [6.7667436349597985]
電気インピーダンストモグラフィ(EIT)は、境界測定から体内の導電率分布を再構成する。
EIT再構成は、正確な結果が複雑である不適切な非線形逆問題によって妨げられる。
拡散モデルを用いて生成正規化とインプリシットニューラル表現(INR)を組み合わせた新しい手法であるDiff-INRを提案する。
論文 参考訳(メタデータ) (2024-09-06T14:21:23Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML法は、非線形構造の地震応答をモデル化するために、科学的原理と物理法則をディープニューラルネットワークに統合する。
運動方程式を操作することは、システムの非線形性を学習し、物理的に解釈可能な結果の中で解を閉じ込めるのに役立つ。
結果、既存の物理誘導LSTMモデルよりも複雑なデータを処理し、他の非物理データ駆動ネットワークより優れている。
論文 参考訳(メタデータ) (2024-02-28T02:16:03Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。