論文の概要: A Residual Guided strategy with Generative Adversarial Networks in training Physics-Informed Transformer Networks
- arxiv url: http://arxiv.org/abs/2508.00855v1
- Date: Tue, 15 Jul 2025 03:45:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-10 09:30:49.269308
- Title: A Residual Guided strategy with Generative Adversarial Networks in training Physics-Informed Transformer Networks
- Title(参考訳): 物理インフォームド変圧器ネットワークの学習における生成共振器ネットワークを用いた残留誘導戦略
- Authors: Ziyang Zhang, Feifan Zhang, Weidong Tang, Lei Shi, Tailai Chen,
- Abstract要約: 本稿では,GAN(Generative Adrative Network)を用いた物理入力変換器の残留指導戦略を提案する。
我々のフレームワークはトランスフォーマーを統合し、自己回帰処理によって時間的相関を本質的にキャプチャし、残差認識GANと組み合わせる。
アレン=カーン=ゴルドン方程式とナヴィエ=ストークス方程式の実験は、ベースライン法と比較して3桁の相対的なMSEの減少を示す。
- 参考スコア(独自算出の注目度): 8.614387766858496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonlinear partial differential equations (PDEs) are pivotal in modeling complex physical systems, yet traditional Physics-Informed Neural Networks (PINNs) often struggle with unresolved residuals in critical spatiotemporal regions and violations of temporal causality. To address these limitations, we propose a novel Residual Guided Training strategy for Physics-Informed Transformer via Generative Adversarial Networks (GAN). Our framework integrates a decoder-only Transformer to inherently capture temporal correlations through autoregressive processing, coupled with a residual-aware GAN that dynamically identifies and prioritizes high-residual regions. By introducing a causal penalty term and an adaptive sampling mechanism, the method enforces temporal causality while refining accuracy in problematic domains. Extensive numerical experiments on the Allen-Cahn, Klein-Gordon, and Navier-Stokes equations demonstrate significant improvements, achieving relative MSE reductions of up to three orders of magnitude compared to baseline methods. This work bridges the gap between deep learning and physics-driven modeling, offering a robust solution for multiscale and time-dependent PDE systems.
- Abstract(参考訳): 非線形偏微分方程式(英語版)(PDE)は複雑な物理系をモデル化する上で重要であるが、伝統的な物理情報ニューラルネットワーク(英語版)(PINN)は、臨界時空間領域における未解決残差と時間的因果関係の違反にしばしば苦労する。
これらの制約に対処するため,GAN(Generative Adversarial Networks)を用いた物理インフォームドトランスフォーマのためのResidual Guided Training戦略を提案する。
我々のフレームワークはデコーダのみのトランスフォーマーを統合し、自己回帰処理によって時間的相関を本質的に捕捉し、高残留領域を動的に識別・優先順位付けする残差認識型GANと組み合わせる。
因果的ペナルティ項と適応的サンプリング機構を導入することにより、問題領域の精度を向上しつつ時間的因果関係を強制する。
アレン・カーン、クライン・ゴードン、ナヴィエ・ストークス方程式の大規模な数値実験は、ベースライン法と比較して最大3桁のMSE還元を達成し、大幅な改善を示した。
この研究は、ディープラーニングと物理駆動モデリングのギャップを埋め、マルチスケールおよび時間依存PDEシステムのための堅牢なソリューションを提供する。
関連論文リスト
- PhysicsCorrect: A Training-Free Approach for Stable Neural PDE Simulations [4.7903561901859355]
予測ステップ毎にPDE整合性を強制する,トレーニング不要な修正フレームワークであるNyberCorrectを提案する。
私たちの重要なイノベーションは、オフラインのウォームアップフェーズでJacobianとその擬似逆をプリ計算する効率的なキャッシュ戦略です。
3つの代表的なPDEシステムにおいて、物理コレクトは予測誤差を最大100倍に削減し、無視可能な推論時間を加算する。
論文 参考訳(メタデータ) (2025-07-03T01:22:57Z) - Accelerating Multiscale Modeling with Hybrid Solvers: Coupling FEM and Neural Operators with Domain Decomposition [3.0635300721402228]
本研究では、PI-NOと有限要素法(FE)をドメイン分解を通じて統合する新しいハイブリッドフレームワークを提案する。
フレームワークの有効性は、静的、準静的、動的レシエーションにまたがる様々な問題で検証されている。
本研究は,(1)サブドメインインタフェース間の解の連続性を維持すること,(2)微細メッシュ要求を排除して計算コストを削減すること,(3)時間依存シミュレーションにおける誤差の蓄積を緩和すること,(4)物理現象の進化への自動適応を可能にすること,である。
論文 参考訳(メタデータ) (2025-04-15T16:54:04Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Multilayer Perceptron Based Stress Evolution Analysis under DC Current
Stressing for Multi-segment Wires [8.115870370527324]
エレクトロマイグレーション(EM)は、超大規模統合(VLSI)システムの信頼性解析における主要な関心事の一つである。
従来の手法はしばしば十分に正確ではないため、特に高度な技術ノードにおいて、望ましくない過設計につながる。
本稿では,多層パーセプトロン(MLP)を用いて,空核形成フェーズにおける相互接続木間の応力変化を計算する手法を提案する。
論文 参考訳(メタデータ) (2022-05-17T07:38:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。