論文の概要: A Moral Agency Framework for Legitimate Integration of AI in Bureaucracies
- arxiv url: http://arxiv.org/abs/2508.08231v2
- Date: Wed, 13 Aug 2025 22:11:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 11:31:31.728604
- Title: A Moral Agency Framework for Legitimate Integration of AI in Bureaucracies
- Title(参考訳): 官僚組織におけるAIの正規統合のためのモラルエージェンシー・フレームワーク
- Authors: Chris Schmitz, Joanna Bryson,
- Abstract要約: 公務員官僚は人工知能(AI)の恩恵を享受しようとする
本稿では,官僚構造におけるAIの合法的な統合のための3点のモラルエージェンシー・フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Public-sector bureaucracies seek to reap the benefits of artificial intelligence (AI), but face important concerns about accountability and transparency when using AI systems. In particular, perception or actuality of AI agency might create ethics sinks - constructs that facilitate dissipation of responsibility when AI systems of disputed moral status interface with bureaucratic structures. Here, we reject the notion that ethics sinks are a necessary consequence of introducing AI systems into bureaucracies. Rather, where they appear, they are the product of structural design decisions across both the technology and the institution deploying it. We support this claim via a systematic application of conceptions of moral agency in AI ethics to Weberian bureaucracy. We establish that it is both desirable and feasible to render AI systems as tools for the generation of organizational transparency and legibility, which continue the processes of Weberian rationalization initiated by previous waves of digitalization. We present a three-point Moral Agency Framework for legitimate integration of AI in bureaucratic structures: (a) maintain clear and just human lines of accountability, (b) ensure humans whose work is augmented by AI systems can verify the systems are functioning correctly, and (c) introduce AI only where it doesn't inhibit the capacity of bureaucracies towards either of their twin aims of legitimacy and stewardship. We suggest that AI introduced within this framework can not only improve efficiency and productivity while avoiding ethics sinks, but also improve the transparency and even the legitimacy of a bureaucracy.
- Abstract(参考訳): 公職の官僚は、人工知能(AI)の利点を享受しようとするが、AIシステムを使用する際の説明責任と透明性に関する重要な懸念に直面している。
特に、AI機関の認識や現実性は、官僚構造との倫理的地位の相違を論じるAIシステムにおいて、責任の解消を促進する構造である倫理的シンクを創出する可能性がある。
ここでは、倫理的シンクが、官僚にAIシステムを導入するために必要な結果であるという考えを否定する。
むしろ、それらが現れる場所は、技術とそれを展開する機関の両方にまたがる構造設計決定の産物である。
我々はこの主張を、Weberian官僚制に対するAI倫理における道徳的エージェンシーの概念の体系的な適用を通じて支援する。
我々は、従来のデジタル化の波によって開始されたWeberian合理化の過程を継続する、組織的透明性と正当性の生成のためのツールとして、AIシステムをレンダリングすることが望ましいと同時に実現可能であることを証明した。
官僚構造におけるAIの合法的な統合のための3点モラルエージェンシー・フレームワークを提示する。
(a)明快で人間の説明責任を保ちます。
b)AIシステムによって作業が強化された人間は、システムが正しく機能していることを確認することができ、
(c) 正当性と執務という双子の目的に対して官僚の能力が阻害されない場合にのみ、AIを導入する。
このフレームワークで導入されたAIは、倫理的シンクを避けながら効率と生産性を向上させるだけでなく、透明性と官僚主義の正当性も改善できる、と提案する。
関連論文リスト
- Artificial Intelligence in Government: Why People Feel They Lose Control [44.99833362998488]
行政における人工知能の利用は急速に拡大している。
AIはより効率と応答性を約束するが、政府機能への統合は公正性、透明性、説明責任に関する懸念を提起する。
この記事では、デリゲートの特別事例として、AI導入に関するプリンシパル・エージェント理論を適用します。
論文 参考訳(メタデータ) (2025-05-02T07:46:41Z) - Artificial Intelligence (AI) and the Relationship between Agency, Autonomy, and Moral Patiency [0.0]
私たちは、現在のAIシステムは高度に洗練されていますが、真のエージェンシーと自律性は欠如しています。
我々は、意識のない限られた形態の人工道徳機関を達成できる未来のシステムの可能性を排除することはできない。
論文 参考訳(メタデータ) (2025-04-11T03:48:40Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Beneficent Intelligence: A Capability Approach to Modeling Benefit,
Assistance, and Associated Moral Failures through AI Systems [12.239090962956043]
AI倫理に関する一般的な言説は、AIシステムが個人と対話する際に生じる多様な倫理的懸念を捉えるのに必要な言語や形式主義を欠いている。
本稿では、利害関係者に有意義な利益や援助を与えるために、AIシステムに必要な倫理的概念と権利のネットワークを定式化する枠組みを提案する。
論文 参考訳(メタデータ) (2023-08-01T22:38:14Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Putting AI Ethics into Practice: The Hourglass Model of Organizational
AI Governance [0.0]
AIシステムの開発と利用を目標とする,AIガバナンスフレームワークを提案する。
このフレームワークは、AIシステムをデプロイする組織が倫理的AI原則を実践に翻訳するのを助けるように設計されている。
論文 参考訳(メタデータ) (2022-06-01T08:55:27Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。