論文の概要: Mol-R1: Towards Explicit Long-CoT Reasoning in Molecule Discovery
- arxiv url: http://arxiv.org/abs/2508.08401v1
- Date: Mon, 11 Aug 2025 18:50:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 21:07:34.208909
- Title: Mol-R1: Towards Explicit Long-CoT Reasoning in Molecule Discovery
- Title(参考訳): Mol-R1: 分子発見における極端に長いCoT推論を目指して
- Authors: Jiatong Li, Weida Wang, Qinggang Zhang, Junxian Li, Di Zhang, Changmeng Zheng, Shufei Zhang, Xiaoyong Wei, Qing Li,
- Abstract要約: Mol-R1は、テキストベースの分子生成におけるR1のようなExplicit Long-CoT推論モデルの説明可能性と推論性能を改善するために設計された新しいフレームワークである。
分子反復適応(英: Molecular Iterative Adaptation)とは、分子発見のためのR1ライクな推論モデルの推論性能を高めるために、SFT(Supervised Fine-tuning)とRPO(Reinforced Policy Optimization)を反復的に組み合わせたトレーニング戦略である。
- 参考スコア(独自算出の注目度): 21.895481477176475
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs), especially Explicit Long Chain-of-Thought (CoT) reasoning models like DeepSeek-R1 and QWQ, have demonstrated powerful reasoning capabilities, achieving impressive performance in commonsense reasoning and mathematical inference. Despite their effectiveness, Long-CoT reasoning models are often criticized for their limited ability and low efficiency in knowledge-intensive domains such as molecule discovery. Success in this field requires a precise understanding of domain knowledge, including molecular structures and chemical principles, which is challenging due to the inherent complexity of molecular data and the scarcity of high-quality expert annotations. To bridge this gap, we introduce Mol-R1, a novel framework designed to improve explainability and reasoning performance of R1-like Explicit Long-CoT reasoning LLMs in text-based molecule generation. Our approach begins with a high-quality reasoning dataset curated through Prior Regulation via In-context Distillation (PRID), a dedicated distillation strategy to effectively generate paired reasoning traces guided by prior regulations. Building upon this, we introduce MoIA, Molecular Iterative Adaptation, a sophisticated training strategy that iteratively combines Supervised Fine-tuning (SFT) with Reinforced Policy Optimization (RPO), tailored to boost the reasoning performance of R1-like reasoning models for molecule discovery. Finally, we examine the performance of Mol-R1 in the text-based molecule reasoning generation task, showing superior performance against existing baselines.
- Abstract(参考訳): 大規模言語モデル(LLM)、特にDeepSeek-R1 や QWQ のような Explicit Long Chain-of-Thought (CoT) 推論モデルは強力な推論能力を示しており、常識的推論や数学的推論において優れた性能を発揮している。
その効果にもかかわらず、Long-CoT推論モデルは、分子発見のような知識集約ドメインにおいて、その限られた能力と低い効率でしばしば批判される。
この分野での成功は、分子構造や化学原理を含むドメイン知識の正確な理解を必要とする。
このギャップを埋めるために、テキストベースの分子生成におけるR1-like Explicit Long-CoT推論LLMの説明可能性と推論性能を改善するために設計された新しいフレームワークであるMol-R1を紹介する。
提案手法は, 先行規制によって導かれるペアの推論トレースを効果的に生成するための蒸留法である, PRID (Prefer Regulation) によって算出された高品質な推論データセットから始まる。
分子発見のためのR1ライクな推論モデルの推論性能を高めるために,スーパービジョンファインチューニング(SFT)と強化ポリシー最適化(RPO)を反復的に組み合わせた高度なトレーニング戦略である分子反復適応法(MoIA)を導入する。
最後に,テキストベースの分子推論タスクにおけるMoll-R1の性能について検討し,既存のベースラインに対して優れた性能を示す。
関連論文リスト
- $\text{M}^{2}$LLM: Multi-view Molecular Representation Learning with Large Language Models [59.125833618091846]
分子構造ビュー,分子タスクビュー,分子規則ビューの3つの視点を統合した多視点フレームワークを提案する。
実験によると、$textM2$LLMは、分類タスクと回帰タスクをまたいだ複数のベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-08-12T05:46:47Z) - MolReasoner: Toward Effective and Interpretable Reasoning for Molecular LLMs [30.030008221150407]
MolReasonerは、大規模言語モデルを記憶から化学推論に移行するために設計された2段階のフレームワークである。
まず,GPT-4o で生成した合成Chain-of-Thought(CoT) サンプルを用いてモデルの推論能力を初期化し,化学的精度を検証した Mol-SFT を提案する。
その後、Moll-RLは、化学構造と言語的記述との整合性を明確に設計した特殊報酬関数による強化学習を適用した。
論文 参考訳(メタデータ) (2025-08-04T05:10:11Z) - ChemDFM-R: An Chemical Reasoner LLM Enhanced with Atomized Chemical Knowledge [14.6026550444088]
この研究は化学の特定の分野に焦点をあて、ケミカル・リアソナー LLM, ChemDFM-R を開発した。
まず、原子化知識点の包括的データセットを構築し、モデルの基本原理と化学の論理構造に対する理解を深める。
多様な化学ベンチマークの実験により、ChemDFM-Rは、解釈可能で合理的な出力を提供しながら、最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2025-07-29T16:40:49Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
小型分子のための機能的グループ認識表現(FARM)について紹介する。
FARMはSMILES、自然言語、分子グラフのギャップを埋めるために設計された新しいモデルである。
我々は、13のタスクのうち11のタスクで最先端のパフォーマンスを達成するMoleculeNetデータセット上で、FARMを評価した。
論文 参考訳(メタデータ) (2024-10-02T23:04:58Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
大規模言語モデル(LLM)は、様々なクロスモーダルタスクにおいて顕著なパフォーマンスを示している。
本研究では,分子カプセル翻訳のためのインコンテキストFew-Shot Molecule Learningパラダイムを提案する。
分子理解とテキストベースの分子生成を含む分子キャプション翻訳におけるMollReGPTの有効性を評価する。
論文 参考訳(メタデータ) (2023-06-11T08:16:25Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。