論文の概要: FARM: Functional Group-Aware Representations for Small Molecules
- arxiv url: http://arxiv.org/abs/2410.02082v3
- Date: Fri, 01 Aug 2025 22:16:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.586159
- Title: FARM: Functional Group-Aware Representations for Small Molecules
- Title(参考訳): FARM: 小分子の関数型グループ認識表現
- Authors: Thao Nguyen, Kuan-Hao Huang, Ge Liu, Martin D. Burke, Ying Diao, Heng Ji,
- Abstract要約: 小型分子のための機能的グループ認識表現(FARM)について紹介する。
FARMはSMILES、自然言語、分子グラフのギャップを埋めるために設計された新しいモデルである。
我々は、13のタスクのうち11のタスクで最先端のパフォーマンスを達成するMoleculeNetデータセット上で、FARMを評価した。
- 参考スコア(独自算出の注目度): 55.281754551202326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Functional Group-Aware Representations for Small Molecules (FARM), a novel foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs. The key innovation of FARM lies in its functional group-aware tokenization, which directly incorporates functional group information into SMILES, enriching SMILES with detailed chemical context. For example, instead of using "O" to represent all oxygen atoms, we use specific tokens like "O_ketone" and "O_hydroxyl" to differentiate oxygen atoms belonging to distinct functional groups. This tokenization expands the chemical lexicon, effectively bridging the gap between SMILES and natural language in terms of vocabulary size, ultimately enhancing the model's ability to predict molecular properties. FARM also represents molecules from two perspectives: by (1) using masked language modeling to capture atom-level features and (2) employing graph neural networks to encode the whole molecule topology. FARM leverages contrastive learning to aligns these two views of representations into a unified molecular embedding. We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 11 out of 13 tasks. These results highlight FARM's potential to improve molecular representation learning and demonstrate its strong transfer learning capabilities, paving the way for promising applications in drug discovery and pharmaceutical research.
- Abstract(参考訳): SMILES,自然言語,分子グラフのギャップを埋める新しい基礎モデルであるFARM(Functional Group-Aware Representations for Small Molecules)を紹介する。
FARMの鍵となる革新は、機能的グループ認識トークン化であり、機能的グループ情報をSMILESに直接組み込んで、詳細な化学状況でSMILESを強化することである。
例えば、全ての酸素原子を表すのに「O」を使う代わりに、「O_ケトン」や「O_ヒドロキシル」のような特定のトークンを使って、異なる官能基に属する酸素原子を区別する。
このトークン化は化学レキシコンを拡張し、語彙サイズの観点からSMILESと自然言語のギャップを効果的に埋め、最終的にモデルが分子特性を予測する能力を増強する。
FARMはまた、(1)マスク言語モデリングを用いて原子レベルの特徴を捉え、(2)グラフニューラルネットワークを用いて分子トポロジー全体を符号化する、という2つの観点から分子を表現している。
FARMはコントラスト学習を利用して、これらの2つの表現のビューを統一された分子埋め込みに整合させる。
われわれは、13タスク中11タスクで最先端のパフォーマンスを達成するMoeculeNetデータセット上で、FARMを厳格に評価する。
これらの結果は、FARMが分子表現学習を改善し、その強力な伝達学習能力を実証する可能性を強調し、医薬品発見および医薬品研究における有望な応用の道を開いた。
関連論文リスト
- Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
分子グラフを不均一な分子グラフ学習(KCHML)に符号化するパラダイムシフトを提案する。
KCHMLは、不均一な分子グラフと二重メッセージパッシング機構によって強化された3つの異なるグラフビュー-分子、元素、薬理学-を通して分子を概念化する。
この設計は、プロパティ予測やドラッグ・ドラッグ・インタラクション(DDI)予測などの下流タスクに対する包括的な表現を提供する。
論文 参考訳(メタデータ) (2025-02-17T11:53:58Z) - MolX: Enhancing Large Language Models for Molecular Understanding With A Multi-Modal Extension [36.31928599489024]
タスクハンドリング能力の強い大規模言語モデル(LLM)は、様々な分野において顕著な進歩を見せている。
本研究は, 分子の理解能力を高めるために, MolX と呼ばれるマルチモーダル外部モジュールを組み込むことにより, LLM の分子理解能力を高めることを目的とする。
手作りの分子指紋は、その埋め込みドメイン知識を活用するために組み込まれている。
論文 参考訳(メタデータ) (2024-06-10T20:25:18Z) - DrugLLM: Open Large Language Model for Few-shot Molecule Generation [20.680942401843772]
DrugLLMは、過去の修飾に基づいて次の分子を予測することで、薬物発見における分子の修飾方法を学ぶ。
計算実験では、限られた例に基づいて期待された特性を持つ新しい分子を生成することができる。
論文 参考訳(メタデータ) (2024-05-07T09:18:13Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
本稿では,分子特性予測のための自己教師付きグラフニューラルネットワークフレームワークであるDIG-Molを紹介する。
DIG-Molは2つの相互接続ネットワークと運動量蒸留ネットワークを統合し、分子特性を効率的に改善する。
我々は,様々な分子特性予測タスクにおける広範囲な実験的評価により,DIG-Molの最先端性能を確立した。
論文 参考訳(メタデータ) (2024-05-04T10:09:27Z) - Unveiling Molecular Moieties through Hierarchical Grad-CAM Graph Explainability [0.0]
生物学的活性に対する分子サブストラクチャーの特定の寄与を解明するための説明可能な方法の統合は重要な課題である。
我々は,小分子のデータセットを用いて20個のGNNモデルを訓練し,キナーゼファミリーから20個のタンパク質標的上での活性を予測することを目標とした。
我々は階層型Grad-CAMグラフExplainerフレームワークを実装し,タンパク質-リガンド結合安定化を駆動する分子構造を詳細に解析する。
論文 参考訳(メタデータ) (2024-01-29T17:23:25Z) - Multi-Modal Representation Learning for Molecular Property Prediction:
Sequence, Graph, Geometry [6.049566024728809]
深層学習に基づく分子特性予測は、従来の手法の資源集約性に対する解決策として登場した。
本稿では,分子特性予測のための新しいマルチモーダル表現学習モデルSGGRLを提案する。
モダリティ間の整合性を確保するため、SGGRLは異なる分子の類似性を最小化しながら同じ分子の表現の類似性を最大化するように訓練される。
論文 参考訳(メタデータ) (2024-01-07T02:18:00Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
本稿では,化学反応を用いて分子表現の学習を支援することを提案する。
本手法は,1) 埋め込み空間を適切に整理し, 2) 分子埋め込みの一般化能力を向上させるために有効であることが証明された。
実験結果から,本手法は様々なダウンストリームタスクにおける最先端性能を実現することが示された。
論文 参考訳(メタデータ) (2021-09-21T00:08:43Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
本稿では,MoLFormerと呼ばれる効率的なトランスフォーマーエンコーダモデルのトレーニングにより得られた分子埋め込みについて述べる。
実験の結果,グラフベースおよび指紋ベースによる教師付き学習ベースラインと比較して,学習された分子表現が競合的に機能することが確認された。
論文 参考訳(メタデータ) (2021-06-17T14:33:55Z) - MolCLR: Molecular Contrastive Learning of Representations via Graph
Neural Networks [11.994553575596228]
MolCLRは、大規模なラベルなしの分子データセットのための自己監視学習フレームワークです。
原子マスキング、結合除去、サブグラフ除去の3つの新しい分子グラフ増強法を提案する。
提案手法は,多くの挑戦的データセットに対して最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-02-19T17:35:18Z) - Reinforced Molecular Optimization with Neighborhood-Controlled Grammars [63.84003497770347]
分子最適化のためのグラフ畳み込みポリシネットワークであるMNCE-RLを提案する。
我々は、元の近傍制御された埋め込み文法を拡張して、分子グラフ生成に適用する。
提案手法は, 分子最適化タスクの多種多様さにおいて, 最先端性能を実現する。
論文 参考訳(メタデータ) (2020-11-14T05:42:15Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。