論文の概要: AgriGPT: a Large Language Model Ecosystem for Agriculture
- arxiv url: http://arxiv.org/abs/2508.08632v1
- Date: Tue, 12 Aug 2025 04:51:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 21:07:34.300901
- Title: AgriGPT: a Large Language Model Ecosystem for Agriculture
- Title(参考訳): AgriGPT:農業用大規模言語モデル生態系
- Authors: Bo Yang, Yu Zhang, Lanfei Feng, Yunkui Chen, Jianyu Zhang, Xiao Xu, Nueraili Aierken, Yurui Li, Yuxuan Chen, Guijun Yang, Yong He, Runhe Huang, Shijian Li,
- Abstract要約: AgriGPTは、農業利用のためのドメイン特化大規模言語モデルエコシステムである。
信頼性のあるデータソースを,高品質で標準化された質問応答データセットであるAgri-342Kにコンパイルする,スケーラブルなデータエンジンを設計する。
本稿では,高密度検索,スパース検索,マルチホップ知識グラフ推論を組み合わせた3チャンネル検索拡張フレームワークTri-RAGを用いる。
- 参考スコア(独自算出の注目度): 16.497060004913806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the rapid progress of Large Language Models (LLMs), their application in agriculture remains limited due to the lack of domain-specific models, curated datasets, and robust evaluation frameworks. To address these challenges, we propose AgriGPT, a domain-specialized LLM ecosystem for agricultural usage. At its core, we design a multi-agent scalable data engine that systematically compiles credible data sources into Agri-342K, a high-quality, standardized question-answer (QA) dataset. Trained on this dataset, AgriGPT supports a broad range of agricultural stakeholders, from practitioners to policy-makers. To enhance factual grounding, we employ Tri-RAG, a three-channel Retrieval-Augmented Generation framework combining dense retrieval, sparse retrieval, and multi-hop knowledge graph reasoning, thereby improving the LLM's reasoning reliability. For comprehensive evaluation, we introduce AgriBench-13K, a benchmark suite comprising 13 tasks with varying types and complexities. Experiments demonstrate that AgriGPT significantly outperforms general-purpose LLMs on both domain adaptation and reasoning. Beyond the model itself, AgriGPT represents a modular and extensible LLM ecosystem for agriculture, comprising structured data construction, retrieval-enhanced generation, and domain-specific evaluation. This work provides a generalizable framework for developing scientific and industry-specialized LLMs. All models, datasets, and code will be released to empower agricultural communities, especially in underserved regions, and to promote open, impactful research.
- Abstract(参考訳): LLM(Large Language Models)の急速な進歩にもかかわらず、ドメイン固有のモデル、キュレートされたデータセット、堅牢な評価フレームワークが欠如しているため、農業におけるその応用は限定的のままである。
これらの課題に対処するため,農業利用のためのドメイン特化LDMエコシステムであるAgriGPTを提案する。
信頼性のあるデータソースを,高品質で標準化されたQAデータセットであるAgri-342Kに体系的にコンパイルするマルチエージェントスケーラブルなデータエンジンを設計する。
このデータセットに基づいてトレーニングされたAgriGPTは、実践者から政策立案者に至るまで、幅広い農業利害関係者をサポートする。
そこで本研究では,高密度検索,スパース検索,マルチホップ知識グラフ推論を組み合わせたTri-RAGを用いて,LLMの推論信頼性を向上させる。
本稿では,AgriBench-13Kという,様々なタイプと複雑さを持つ13のタスクからなるベンチマークスイートを紹介する。
実験により、AgriGPTはドメイン適応と推論の両方において汎用LLMを著しく上回っていることが示された。
AgriGPTは、モデル自体以外にも、構造化データ構築、検索強化生成、ドメイン固有の評価を含む、モジュラーで拡張可能な農業用LLMエコシステムを表現している。
この研究は、科学および産業専門のLLMを開発するための一般化可能なフレームワークを提供する。
すべてのモデル、データセット、コードは、農業コミュニティ、特に保護されていない地域で強化され、オープンで影響力のある研究を促進するためにリリースされます。
関連論文リスト
- AI in Agriculture: A Survey of Deep Learning Techniques for Crops, Fisheries and Livestock [77.95897723270453]
作物、漁業、家畜が世界の食料生産のバックボーンを形成し、成長を続ける世界の人口を養うのに不可欠である。
これらの問題に対処するには、効率的で正確でスケーラブルな技術ソリューションが必要であり、人工知能(AI)の重要性を強調している。
本調査では,従来の機械学習アプローチ,高度なディープラーニング技術,最新のビジョン言語基礎モデルなど,200以上の研究成果を体系的かつ徹底的にレビューする。
論文 参考訳(メタデータ) (2025-07-29T17:59:48Z) - AgriEval: A Comprehensive Chinese Agricultural Benchmark for Large Language Models [19.265932725554833]
本稿では,中国初の総合農業ベンチマークであるAgriEvalを提案する。
AgriEvalは6つの主要な農業カテゴリーと29の農業部門をカバーし、4つの中核的な認知シナリオに対処している。
AgriEvalは14,697の質問と2,167のオープンエンドの質問と回答からなる。
論文 参考訳(メタデータ) (2025-07-29T12:58:27Z) - Leveraging Synthetic Data for Question Answering with Multilingual LLMs in the Agricultural Domain [1.0144032120138065]
本研究は,インドの農業特化資料から多言語(ヒンディー語,パンジャービ語)の合成データセットを生成する。
人為的データセットの評価は、事実性、関連性、農業コンセンサスにおいて著しく改善されている。
論文 参考訳(メタデータ) (2025-07-22T19:25:10Z) - Agri-LLaVA: Knowledge-Infused Large Multimodal Assistant on Agricultural Pests and Diseases [49.782064512495495]
農業分野における最初のマルチモーダル・インストラクション・フォロー・データセットを構築した。
このデータセットは、約40万のデータエントリを持つ221種類以上の害虫と病気をカバーしている。
本稿では,農業用マルチモーダル対話システムであるAgri-LLaVAを開発するための知識注入型学習手法を提案する。
論文 参考訳(メタデータ) (2024-12-03T04:34:23Z) - AgriBench: A Hierarchical Agriculture Benchmark for Multimodal Large Language Models [4.12825661607328]
AgriBenchは農業用マルチモーダル言語モデル(MM-LLM)を評価するために設計された最初のベンチマークである。
我々は,1,784の景観イメージ,セグメンテーションマスク,深度マップ,詳細なアノテーションを含むマルチモーダル農業データセットMM-LUCASを提案する。
本研究は,農業におけるMM-LLMの進歩における画期的な視点を示し,現在進行中であり,専門知識に基づくMM-LLMの今後の発展と革新に価値ある洞察を提供する。
論文 参考訳(メタデータ) (2024-11-30T12:59:03Z) - AgroGPT: Efficient Agricultural Vision-Language Model with Expert Tuning [30.034193330398292]
本稿では,農業領域における視覚のみのデータを活用した指導調整データの構築手法を提案する。
我々は、複数のドメインにまたがる多様な農業データセットを利用し、クラス固有の情報をキュレートし、大規模言語モデル(LLM)を用いてエキスパートチューニングセットを構築する。
AgroGPTは、複雑な農業関連の会話を処理し、有用な洞察を提供する効率的なLMMである。
論文 参考訳(メタデータ) (2024-10-10T22:38:26Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - Domain Generalization for Crop Segmentation with Standardized Ensemble Knowledge Distillation [42.39035033967183]
サービスロボットは、周囲を理解し、野生のターゲットを識別するリアルタイム認識システムが必要です。
しかし、既存の方法はしばしば、新しい作物や環境条件への一般化において不足している。
本稿では,知識蒸留を用いた領域一般化手法を提案する。
論文 参考訳(メタデータ) (2023-04-03T14:28:29Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
本稿では、LC分類と解析を行うために、新しい軽量(89kパラメータのみ)畳み込みニューラルネットワーク(ConvNet)を提案する。
本研究では,実世界のオープンデータソースを3つ組み合わせて13のチャネルを得る。
組込み分析は、いくつかのクラスにおいて限られたパフォーマンスを期待し、最も類似したクラスをグループ化する機会を与えてくれます。
論文 参考訳(メタデータ) (2022-01-26T14:58:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。