論文の概要: Exploring Large Language Model Agents for Piloting Social Experiments
- arxiv url: http://arxiv.org/abs/2508.08678v1
- Date: Tue, 12 Aug 2025 06:54:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 21:07:34.326642
- Title: Exploring Large Language Model Agents for Piloting Social Experiments
- Title(参考訳): 大規模言語モデルエージェントによる社会実験の試行
- Authors: Jinghua Piao, Yuwei Yan, Nian Li, Jun Zhang, Yong Li,
- Abstract要約: 計算社会実験は通常、エージェントベースのモデリングを使用して、社会実験を操縦するためのテストベッドを作成する。
その重要性にもかかわらず、その幅広い影響は、その中心となる構成要素、すなわちエージェントの知性によって大きく制限されている。
この研究は、LSM駆動エージェントを設計し、社会実験を試験するための最初のフレームワークを提供する。
- 参考スコア(独自算出の注目度): 12.61097811161024
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Computational social experiments, which typically employ agent-based modeling to create testbeds for piloting social experiments, not only provide a computational solution to the major challenges faced by traditional experimental methods, but have also gained widespread attention in various research fields. Despite their significance, their broader impact is largely limited by the underdeveloped intelligence of their core component, i.e., agents. To address this limitation, we develop a framework grounded in well-established social science theories and practices, consisting of three key elements: (i) large language model (LLM)-driven experimental agents, serving as "silicon participants", (ii) methods for implementing various interventions or treatments, and (iii) tools for collecting behavioral, survey, and interview data. We evaluate its effectiveness by replicating three representative experiments, with results demonstrating strong alignment, both quantitatively and qualitatively, with real-world evidence. This work provides the first framework for designing LLM-driven agents to pilot social experiments, underscoring the transformative potential of LLMs and their agents in computational social science
- Abstract(参考訳): 計算機社会実験は、一般にエージェントベースのモデルを用いて、従来の実験手法が直面する大きな課題に対する計算ソリューションを提供するだけでなく、様々な研究分野で広く注目を集めている。
その重要性にもかかわらず、その幅広い影響は、その中核となる構成要素、すなわちエージェントの未発達な知性によって大きく制限されている。
この制限に対処するため、我々は、三つの重要な要素からなる、確立された社会科学理論と実践に基づく枠組みを開発する。
(i)大規模言語モデル(LLM)による実験エージェントで「シリコン参加者」として機能する。
二 各種の介入又は治療を行う方法、及び
三 行動、調査、面接データを収集するための道具。
本研究は,3つの代表的な実験を再現し,実世界の証拠とともに定量的かつ定性的に強いアライメントを示すことによって,その効果を評価する。
この研究は、LLM駆動型エージェントを設計して社会実験を操縦する最初のフレームワークを提供し、計算社会科学におけるLLMとそのエージェントの変容の可能性を強調している。
関連論文リスト
- Simulating Generative Social Agents via Theory-Informed Workflow Design [11.992123170134185]
社会エージェントのための体系的設計プロセスを提供する理論インフォームド・フレームワークを提案する。
私たちのフレームワークは、社会的認知理論の原則に基づいており、モチベーション、行動計画、学習という3つの重要なモジュールを導入しています。
実験により, 複雑な条件下での現実的な人間の行動パターンを再現できることが実証された。
論文 参考訳(メタデータ) (2025-08-12T08:14:48Z) - Dynamic Knowledge Exchange and Dual-diversity Review: Concisely Unleashing the Potential of a Multi-Agent Research Team [53.38438460574943]
IDVSCIは、大規模言語モデル(LLM)上に構築されたマルチエージェントフレームワークである。
動的知識交換機構とデュアルダイバーシティ・レビュー・パラダイムという2つの重要なイノベーションが組み込まれている。
結果は、IDVSCIが2つのデータセットで常に最高のパフォーマンスを達成していることを示している。
論文 参考訳(メタデータ) (2025-06-23T07:12:08Z) - AgentSociety: Large-Scale Simulation of LLM-Driven Generative Agents Advances Understanding of Human Behaviors and Society [32.849311155921264]
本稿では,現実的な社会環境を統合した大規模社会シミュレータであるAgentSocietyを提案する。
提案したシミュレーターに基づいて,500万件のインタラクションをシミュレートし,10万件以上のエージェントの社会生活を生成する。
偏極、炎症性メッセージの普及、普遍的ベーシック・インカム・ポリシーの効果、ハリケーンなどの外部ショックの影響の4つに焦点をあてる。
論文 参考訳(メタデータ) (2025-02-12T15:27:07Z) - Designing Reliable Experiments with Generative Agent-Based Modeling: A Comprehensive Guide Using Concordia by Google DeepMind [39.96801170116895]
Generative Agent-Based Modeling (GABM)は、AI駆動エージェントが複雑な振る舞いを生成できるシミュレーションを作成することができる。
本稿では,GABMを用いた信頼性実験を設計するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-11T14:45:08Z) - Simulating Field Experiments with Large Language Models [0.6144680854063939]
本稿では,大規模言語モデル(LLM)のフィールド実験への応用を先導する。
観測者モードと参加者モードという2つの新しいプロンプト戦略を導入することで、複雑なフィールド設定において、結果の予測と参加者応答の再現の両方を行うLLMの能力を実証する。
以上の結果から,特定のシナリオにおいて実際の実験結果と良好な一致を示し,観察モードでは66%の刺激精度が得られた。
論文 参考訳(メタデータ) (2024-08-19T03:41:43Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
ツール学習は、外部ツールを使用してユーティリティを拡張するエージェントとして、大きな言語モデル(LLM)を促進する。
ツール選択,ツール実行,アクションキャリブレーションの3つの特別なエージェントを個別にコーディネートする,協調型対話型エージェントフレームワークであるConAgentsを提案する。
3つのデータセットに対する実験により、LLMは、ConAgentsを装備した場合、大幅に改善されたベースラインよりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-05T15:08:16Z) - Computational Experiments Meet Large Language Model Based Agents: A
Survey and Perspective [16.08517740276261]
計算実験は複雑なシステムを研究するための貴重な方法として登場した。
エージェントベースモデリング(ABM)における実際の社会システムを正確に表現することは、人間の多様性と複雑な特性のために困難である。
大規模言語モデル(LLM)の統合が提案され、エージェントが人為的な能力を持つことができる。
論文 参考訳(メタデータ) (2024-02-01T01:17:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。