論文の概要: Designing Reliable Experiments with Generative Agent-Based Modeling: A Comprehensive Guide Using Concordia by Google DeepMind
- arxiv url: http://arxiv.org/abs/2411.07038v1
- Date: Mon, 11 Nov 2024 14:45:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:09:41.686059
- Title: Designing Reliable Experiments with Generative Agent-Based Modeling: A Comprehensive Guide Using Concordia by Google DeepMind
- Title(参考訳): 生成エージェントベースモデリングによる信頼性実験の設計:Google DeepMindによるコンコーディアを用いた総合的なガイド
- Authors: Alejandro Leonardo García Navarro, Nataliia Koneva, Alfonso Sánchez-Macián, José Alberto Hernández, Manuel Goyanes,
- Abstract要約: Generative Agent-Based Modeling (GABM)は、AI駆動エージェントが複雑な振る舞いを生成できるシミュレーションを作成することができる。
本稿では,GABMを用いた信頼性実験を設計するためのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 39.96801170116895
- License:
- Abstract: In social sciences, researchers often face challenges when conducting large-scale experiments, particularly due to the simulations' complexity and the lack of technical expertise required to develop such frameworks. Agent-Based Modeling (ABM) is a computational approach that simulates agents' actions and interactions to evaluate how their behaviors influence the outcomes. However, the traditional implementation of ABM can be demanding and complex. Generative Agent-Based Modeling (GABM) offers a solution by enabling scholars to create simulations where AI-driven agents can generate complex behaviors based on underlying rules and interactions. This paper introduces a framework for designing reliable experiments using GABM, making sophisticated simulation techniques more accessible to researchers across various fields. We provide a step-by-step guide for selecting appropriate tools, designing the model, establishing experimentation protocols, and validating results.
- Abstract(参考訳): 社会科学において、研究者は大規模な実験を行う際に、特にシミュレーションの複雑さとそのようなフレームワークを開発するために必要な技術的専門知識の欠如のために、しばしば課題に直面している。
エージェントベースモデリング(エージェントベースモデリング、英: Agent-Based Modeling、ABM)は、エージェントの行動と相互作用をシミュレートし、エージェントの行動が結果にどのように影響するかを評価する計算手法である。
しかし、従来の ABM の実装は必要で複雑である。
Generative Agent-Based Modeling (GABM)は、AI駆動エージェントが基礎となるルールと相互作用に基づいて複雑な振る舞いを生成できるシミュレーションを作成することができる。
本稿では,GABMを用いた信頼性実験を設計するためのフレームワークを提案する。
適切なツールを選択し、モデルを設計し、実験プロトコルを確立し、結果を検証するためのステップバイステップガイドを提供する。
関連論文リスト
- MLR-Copilot: Autonomous Machine Learning Research based on Large Language Models Agents [10.86017322488788]
大規模言語モデルを用いた自律型機械学習研究(MLR-Copilot)を提案する。
大規模言語モデル(LLM)エージェントを用いた研究アイデアの自動生成と実装を通じて、機械学習研究の生産性を向上させるように設計されている。
我々は,5つの機械学習研究課題に関するフレームワークを評価し,研究の進展とイノベーションを促進するためのフレームワークの可能性を示す実験結果を示した。
論文 参考訳(メタデータ) (2024-08-26T05:55:48Z) - Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission [74.10928850232717]
本稿では、モデル定式化のための生成人工知能(AI)エージェントを開発し、送信戦略の設計に専門家(MoE)の混合を適用した。
具体的には,大規模言語モデル(LLM)を活用して対話型モデリングパラダイムを構築する。
定式化問題の解法として, MoE-proximal Policy Optimization (PPO) アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-14T03:44:54Z) - Large Language Models Need Consultants for Reasoning: Becoming an Expert in a Complex Human System Through Behavior Simulation [5.730580726163518]
大規模言語モデル(LLM)は、数学、法学、コーディング、常識、世界知識といった分野において、人間に匹敵する優れた能力を示してきた。
本稿では,生成エージェントによるシミュレーション技術を活用した新たな推論フレームワークであるMosaic Expert Observation Wall' (MEOW)を提案する。
論文 参考訳(メタデータ) (2024-03-27T03:33:32Z) - Computational Experiments Meet Large Language Model Based Agents: A
Survey and Perspective [16.08517740276261]
計算実験は複雑なシステムを研究するための貴重な方法として登場した。
エージェントベースモデリング(ABM)における実際の社会システムを正確に表現することは、人間の多様性と複雑な特性のために困難である。
大規模言語モデル(LLM)の統合が提案され、エージェントが人為的な能力を持つことができる。
論文 参考訳(メタデータ) (2024-02-01T01:17:46Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
LLMベースのエージェントフレームワークを提案し,実際のユーザ動作をシミュレートするサンドボックス環境を設計する。
実験結果から,本手法のシミュレーション行動は実人の行動に非常に近いことが判明した。
論文 参考訳(メタデータ) (2023-06-05T02:58:35Z) - Designing Optimal Behavioral Experiments Using Machine Learning [8.759299724881219]
BOEDと機械学習の最近の進歩を活用して、あらゆる種類のモデルに対して最適な実験を見つけるためのチュートリアルを提供する。
マルチアームバンディット意思決定タスクにおける探索と搾取のバランスに関する理論を考察する。
文献でよく用いられる実験的な設計と比較すると、最適な設計は個人の行動に最適なモデルのどれが最適かをより効率的に決定する。
論文 参考訳(メタデータ) (2023-05-12T18:24:30Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
本稿では,抽出可能な確率を伴わない計算モデルを選択する実験設計手法BOSMOSを提案する。
シミュレーション実験では,提案手法により,既存のLFI手法に比べて最大2桁の精度でモデルを選択することができることを示した。
論文 参考訳(メタデータ) (2023-03-03T21:41:01Z) - Facilitating automated conversion of scientific knowledge into
scientific simulation models with the Machine Assisted Generation,
Calibration, and Comparison (MAGCC) Framework [0.0]
Machine Assisted Generation, Comparison, and Computational (MAGCC)フレームワークは、繰り返し発生する重要なステップとプロセスのマシンアシストと自動化を提供する。
MAGCCは、自然言語処理または既存の数学的モデルから抽出された知識抽出のためのシステムを橋渡しする。
MAGCCフレームワークは任意の科学領域をカスタマイズでき、今後は新たに開発されたコード生成AIシステムを統合する予定だ。
論文 参考訳(メタデータ) (2022-04-21T19:30:50Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Quantitatively Assessing the Benefits of Model-driven Development in
Agent-based Modeling and Simulation [80.49040344355431]
本稿では,MDD とABMS プラットフォームの利用状況と開発ミスについて比較する。
その結果、MDD4ABMSはNetLogoと類似した設計品質のシミュレーションを開発するのに、より少ない労力を必要とすることがわかった。
論文 参考訳(メタデータ) (2020-06-15T23:29:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。