論文の概要: Never Compromise to Vulnerabilities: A Comprehensive Survey on AI Governance
- arxiv url: http://arxiv.org/abs/2508.08789v1
- Date: Tue, 12 Aug 2025 09:42:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 21:07:34.369261
- Title: Never Compromise to Vulnerabilities: A Comprehensive Survey on AI Governance
- Title(参考訳): AIガバナンスに関する総合的な調査
- Authors: Yuchu Jiang, Jian Zhao, Yuchen Yuan, Tianle Zhang, Yao Huang, Yanghao Zhang, Yan Wang, Yanshu Li, Xizhong Guo, Yusheng Zhao, Jun Zhang, Zhi Zhang, Xiaojian Lin, Yixiu Zou, Haoxuan Ma, Yuhu Shang, Yuzhi Hu, Keshu Cai, Ruochen Zhang, Boyuan Chen, Yilan Gao, Ziheng Jiao, Yi Qin, Shuangjun Du, Xiao Tong, Zhekun Liu, Yu Chen, Xuankun Rong, Rui Wang, Yejie Zheng, Zhaoxin Fan, Hongyuan Zhang, Pan Zhou, Lei Jin, Hao Zhao, Xu Yang, Jiaojiao Zhao, Jianshu Li, Joey Tianyi Zhou, Zhi-Qi Cheng, Longtao Huang, Zhiyi Liu, Zheng Zhu, Jianan Li, Gang Wang, Qi Li, Xu-Yao Zhang, Yaodong Yang, Mang Ye, Wenqi Ren, Zhaofeng He, Hang Su, Rongrong Ni, Liping Jing, Xingxing Wei, Junliang Xing, Massimo Alioto, Shengmei Shen, Petia Radeva, Dacheng Tao, Ya-Qin Zhang, Shuicheng Yan, Chi Zhang, Zhongjiang He, Xuelong Li,
- Abstract要約: 本研究は,本質的セキュリティ,デリバティブ・セキュリティ,社会倫理の3つの柱を中心に構築された,技術的・社会的次元を統合した包括的枠組みを提案する。
我々は,(1)防衛が進化する脅威に対して失敗する一般化ギャップ,(2)現実世界のリスクを無視する不適切な評価プロトコル,(3)矛盾する監視につながる断片的な規制,の3つの課題を特定する。
私たちのフレームワークは、研究者、エンジニア、政策立案者に対して、堅牢でセキュアなだけでなく、倫理的に整合性があり、公的な信頼に値するAIシステムを開発するための実用的なガイダンスを提供します。
- 参考スコア(独自算出の注目度): 211.10574938556584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of AI has expanded its capabilities across domains, yet introduced critical technical vulnerabilities, such as algorithmic bias and adversarial sensitivity, that pose significant societal risks, including misinformation, inequity, security breaches, physical harm, and eroded public trust. These challenges highlight the urgent need for robust AI governance. We propose a comprehensive framework integrating technical and societal dimensions, structured around three interconnected pillars: Intrinsic Security (system reliability), Derivative Security (real-world harm mitigation), and Social Ethics (value alignment and accountability). Uniquely, our approach unifies technical methods, emerging evaluation benchmarks, and policy insights to promote transparency, accountability, and trust in AI systems. Through a systematic review of over 300 studies, we identify three core challenges: (1) the generalization gap, where defenses fail against evolving threats; (2) inadequate evaluation protocols that overlook real-world risks; and (3) fragmented regulations leading to inconsistent oversight. These shortcomings stem from treating governance as an afterthought, rather than a foundational design principle, resulting in reactive, siloed efforts that fail to address the interdependence of technical integrity and societal trust. To overcome this, we present an integrated research agenda that bridges technical rigor with social responsibility. Our framework offers actionable guidance for researchers, engineers, and policymakers to develop AI systems that are not only robust and secure but also ethically aligned and publicly trustworthy. The accompanying repository is available at https://github.com/ZTianle/Awesome-AI-SG.
- Abstract(参考訳): AIの急速な進歩は、その能力をドメイン全体に拡大する一方で、アルゴリズムバイアスや敵対的感度といった重要な技術的脆弱性を導入し、誤情報、不平等、セキュリティ侵害、身体的危害、浸食された公的な信頼など、社会的な重大なリスクを生じさせている。
これらの課題は、堅牢なAIガバナンスに対する緊急の必要性を強調している。
本稿では,内在的セキュリティ(システム信頼性),デリバティブセキュリティ(現実世界の調和緩和),社会倫理(価値アライメントと説明責任)の3つの柱を中心に構築された,技術的・社会的側面を統合した包括的枠組みを提案する。
このアプローチは、透過性、説明責任、AIシステムの信頼を促進するために、技術的手法、新たな評価ベンチマーク、政策洞察を統一する。
300以上の研究の体系的なレビューを通じて,(1)防御が進化する脅威に対して失敗する一般化ギャップ,(2)現実世界のリスクを無視する不適切な評価プロトコル,(3)一貫性のない監視につながる断片的な規制,の3つの課題を特定した。
これらの欠点は、基本的な設計原則ではなく、ガバナンスを後から考えるものとして扱い、技術的完全性や社会的信頼の相互依存に対処できない、リアクティブでサイロ化された努力を生み出します。
これを解決するために,技術的な厳格さと社会的責任を橋渡しする総合的な研究課題を提示する。
私たちのフレームワークは、研究者、エンジニア、政策立案者に対して、堅牢でセキュアなだけでなく、倫理的に整合性があり、公的な信頼に値するAIシステムを開発するための実用的なガイダンスを提供します。
付属リポジトリはhttps://github.com/ZTianle/Awesome-AI-SGで公開されている。
関連論文リスト
- A Framework for the Assurance of AI-Enabled Systems [0.0]
本稿では,AIシステムのリスク管理と保証のためのクレームベースのフレームワークを提案する。
論文のコントリビューションは、AI保証のためのフレームワークプロセス、関連する定義のセット、AI保証における重要な考慮事項に関する議論である。
論文 参考訳(メタデータ) (2025-04-03T13:44:01Z) - Decoding the Black Box: Integrating Moral Imagination with Technical AI Governance [0.0]
我々は、防衛、金融、医療、教育といった高度な領域に展開するAI技術を規制するために設計された包括的なフレームワークを開発する。
本手法では,厳密な技術的分析,定量的リスク評価,規範的評価を併用して,システム的脆弱性を暴露する。
論文 参考訳(メタデータ) (2025-03-09T03:11:32Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
本稿ではAI製品リスクと信頼性を評価するための業界標準ベンチマークとして,AIluminate v1.0を紹介する。
このベンチマークは、危険、違法、または望ましくない行動を12の危険カテゴリーで引き起こすように設計されたプロンプトに対するAIシステムの抵抗を評価する。
論文 参考訳(メタデータ) (2025-02-19T05:58:52Z) - Responsible Artificial Intelligence Systems: A Roadmap to Society's Trust through Trustworthy AI, Auditability, Accountability, and Governance [37.10526074040908]
本稿では, 包括的観点から, 責任あるAIシステムの概念を考察する。
論文の最終目標は、責任あるAIシステムの設計におけるロードマップの提案である。
論文 参考訳(メタデータ) (2025-02-04T14:47:30Z) - Position: Mind the Gap-the Growing Disconnect Between Established Vulnerability Disclosure and AI Security [56.219994752894294]
我々は、AIセキュリティレポートに既存のプロセスを適用することは、AIシステムの特徴的な特徴に対する根本的な欠点のために失敗する運命にあると主張している。
これらの欠点に対処する私たちの提案に基づき、AIセキュリティレポートへのアプローチと、新たなAIパラダイムであるAIエージェントが、AIセキュリティインシデント報告の進展をさらに強化する方法について論じる。
論文 参考訳(メタデータ) (2024-12-19T13:50:26Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Quantifying AI Vulnerabilities: A Synthesis of Complexity, Dynamical Systems, and Game Theory [0.0]
システム複雑度指数(SCI)、Lyapunov Exponent for AI stability(LEAIS)、Nash Equilibrium Robustness(NER)の3つの指標を導入する新しいアプローチを提案する。
SCIはAIシステムの固有の複雑さを定量化し、LEAISはその安定性と摂動に対する感受性を捉え、NERは敵の操作に対する戦略的堅牢性を評価する。
論文 参考訳(メタデータ) (2024-04-07T07:05:59Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
多くの現在のAIシステムは、認識不能な攻撃に脆弱で、表現不足なグループに偏り、ユーザのプライバシ保護が欠如していることが判明した。
このレビューでは、信頼できるAIシステムを構築するための包括的なガイドとして、AI実践者に提供したいと思っています。
信頼に値するAIに対する現在の断片化されたアプローチを統合するために、AIシステムのライフサイクル全体を考慮した体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-04T03:20:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。