論文の概要: Causal Machine Learning for Patient-Level Intraoperative Opioid Dose Prediction from Electronic Health Records
- arxiv url: http://arxiv.org/abs/2508.09059v1
- Date: Tue, 12 Aug 2025 16:20:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 21:07:34.504135
- Title: Causal Machine Learning for Patient-Level Intraoperative Opioid Dose Prediction from Electronic Health Records
- Title(参考訳): 電子カルテを用いた患者レベルオピオイド量予測のための因果機械学習
- Authors: Jonas Valbjørn Andersena, Anders Peder Højer Karlsen, Markus Harboe Olsen, Nikolaj Krebs Pedersen,
- Abstract要約: OPIAIDは、個別の患者に対してパーソナライズされたオピオイド量を予測するための機械学習アルゴリズムである。
本稿では,アルゴリズムの方法論とアーキテクチャを概説し,重要な仮定と性能評価へのアプローチについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper introduces the OPIAID algorithm, a novel approach for predicting and recommending personalized opioid dosages for individual patients. The algorithm optimizes pain management while minimizing opioid related adverse events (ORADE) by employing machine learning models trained on observational electronic health records (EHR) data. It leverages a causal machine learning approach to understand the relationship between opioid dose, case specific patient and intraoperative characteristics, and pain versus ORADE outcomes. The OPIAID algorithm considers patient-specific characteristics and the influence of different opiates, enabling personalized dose recommendations. This paper outlines the algorithm's methodology and architecture, and discusses key assumptions, and approaches to evaluating its performance.
- Abstract(参考訳): 本稿ではOPIAIDアルゴリズムについて紹介する。OPIAIDアルゴリズムは個人患者に対してパーソナライズされたオピオイド量を予測するための新しいアプローチである。
このアルゴリズムは、観察電子健康記録(EHR)データに基づいてトレーニングされた機械学習モデルを用いて、オピオイド関連有害事象(ORADE)を最小限にしながら、痛み管理を最適化する。
この手法は、オピオイド投与量、症例特異的患者と術中特性、痛みとORADE結果の関係を理解するために、因果機械学習アプローチを利用する。
OPIAIDアルゴリズムは、患者固有の特徴と異なるオピエートの影響を考慮し、パーソナライズドドレコメンデーションを可能にする。
本稿では,アルゴリズムの方法論とアーキテクチャを概説し,重要な仮定と性能評価へのアプローチについて述べる。
関連論文リスト
- Application of Machine Learning Algorithms in Classifying Postoperative Success in Metabolic Bariatric Surgery: A Comprehensive Study [0.32985979395737786]
本研究は, メタボリック・バリウム手術の文脈において, 患者を分類するための新しい機械学習手法を提案する。
GaussianNB、ComplementNB、KNN、Decision Tree、RandomOverSamplerのKNN、SMOTEのKNNなど、さまざまな機械学習モデルを73人のデータセットに適用した。
論文 参考訳(メタデータ) (2024-03-29T11:27:37Z) - Enhancing Readmission Prediction with Deep Learning: Extracting Biomedical Concepts from Clinical Texts [0.26813152817733554]
本研究は,30日以内の患者の寛解をテキストマイニング技術を用いて予測することに焦点を当てた。
この目的のために分類モデルを開発するために,様々な機械学習および深層学習手法が用いられた。
論文 参考訳(メタデータ) (2024-03-12T09:03:44Z) - Enhancing Acute Kidney Injury Prediction through Integration of Drug
Features in Intensive Care Units [0.0]
急性腎障害(AKI)予測と腎障害薬との関連は, 治療現場ではまだ検討されていない。
そこで本研究では,患者処方データをモダリティとして活用し,既存のAKI予測モデルを改善する手法を提案する。
論文 参考訳(メタデータ) (2024-01-09T05:42:32Z) - Prediction of Post-Operative Renal and Pulmonary Complications Using
Transformers [69.81176740997175]
術後急性腎不全,肺合併症,院内死亡の予測におけるトランスフォーマーモデルの有用性について検討した。
以上の結果から,トランスフォーマーモデルにより術後合併症の予測や従来の機械学習モデルよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-06-01T14:08:05Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Individualized Risk Assessment of Preoperative Opioid Use by
Interpretable Neural Network Regression [6.474106608218618]
術前オピオイド使用は, 術前オピオイド需要の増加, 術後成績の悪化, 術後の医療利用と支出の増加に関連していると報告されている。
ディープニューラルネットワーク(DNN)は、その超高速な予測能力のために、リスク評価の強力な手段として登場した。
本稿では,統計モデルとDNNモデルの強みを組み合わせた新しい解釈型ニューラルネットワーク回帰(INNER)を提案する。
論文 参考訳(メタデータ) (2022-05-07T02:35:04Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
既存のアプローチは通常、てんかんの信号の高度にパーソナライズされた特性のために、患者固有の方法でモデルを訓練する。
患者固有のモデルは、蒸留された知識と追加のパーソナライズされたデータによって得られる。
提案手法を用いて,CHB-MIT sEEGデータベース上で5つの最先端の発作予測法を訓練する。
論文 参考訳(メタデータ) (2022-02-25T10:30:29Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
我々は、PD患者の症状と、神経科医が提供した処方薬を収集し、データセットを構築した。
そこで我々は、観察された症状と処方薬との関係を学習し、新しいコンピュータ支援処方薬モデルを構築した。
新来の患者に対しては、処方薬モデルにより、観察された症状に対して適切な処方薬を推奨できる(予測)。
論文 参考訳(メタデータ) (2020-07-31T14:34:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。