論文の概要: From Explainable to Explained AI: Ideas for Falsifying and Quantifying Explanations
- arxiv url: http://arxiv.org/abs/2508.09205v1
- Date: Sat, 09 Aug 2025 10:06:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-14 20:42:00.614351
- Title: From Explainable to Explained AI: Ideas for Falsifying and Quantifying Explanations
- Title(参考訳): 説明可能なAIから説明可能なAIへ - 説明の偽造と定量化のアイデア
- Authors: Yoni Schirris, Eric Marcus, Jonas Teuwen, Hugo Horlings, Efstratios Gavves,
- Abstract要約: 本稿では,計算病理学における分類器の説明に適した人間-機械-VLMインタラクションシステムを提案する。
概念実証は,(1)説明文のクレームを検証するためにスライドウインドウ実験を行うAI統合スライドビューアと,(2)汎用視覚言語モデルを用いた説明文の予測性の定量化である。
- 参考スコア(独自算出の注目度): 24.0405399713747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explaining deep learning models is essential for clinical integration of medical image analysis systems. A good explanation highlights if a model depends on spurious features that undermines generalization and harms a subset of patients or, conversely, may present novel biological insights. Although techniques like GradCAM can identify influential features, they are measurement tools that do not themselves form an explanation. We propose a human-machine-VLM interaction system tailored to explaining classifiers in computational pathology, including multi-instance learning for whole-slide images. Our proof of concept comprises (1) an AI-integrated slide viewer to run sliding-window experiments to test claims of an explanation, and (2) quantification of an explanation's predictiveness using general-purpose vision-language models. The results demonstrate that this allows us to qualitatively test claims of explanations and can quantifiably distinguish competing explanations. This offers a practical path from explainable AI to explained AI in digital pathology and beyond. Code and prompts are available at https://github.com/nki-ai/x2x.
- Abstract(参考訳): 医用画像解析システムの臨床統合には深層学習モデルの記述が不可欠である。
良い説明は、モデルが一般化を弱め、患者のサブセットを傷つける刺激的な特徴に依存しているか、あるいは逆に、新しい生物学的洞察を提示するかどうかを強調している。
GradCAMのようなテクニックは、影響力のある特徴を識別できるが、それらはそれ自体が説明を形成するわけではない測定ツールである。
本稿では,コンピュータ病理学における分類器の説明に適した人間-機械-VLMインタラクションシステムを提案する。
概念実証は,(1)説明文のクレームを検証するためにスライドウインドウ実験を行うAI統合スライドビューアと,(2)汎用視覚言語モデルを用いた説明文の予測性の定量化である。
この結果から,説明のクレームを質的に検証し,競合する説明を定量的に区別できることが示唆された。
これは、説明可能なAIから、デジタル病理学などにおける説明可能なAIへの実践的なパスを提供する。
コードとプロンプトはhttps://github.com/nki-ai/x2x.comで入手できる。
関連論文リスト
- An Ontology-Enabled Approach For User-Centered and Knowledge-Enabled Explanations of AI Systems [0.3480973072524161]
説明可能性に関する最近の研究は、AIモデルやモデル説明可能性の動作を説明することに重点を置いている。
この論文は、モデルとユーザ中心の説明可能性の間のギャップを埋めようとしている。
論文 参考訳(メタデータ) (2024-10-23T02:03:49Z) - Fool Me Once? Contrasting Textual and Visual Explanations in a Clinical Decision-Support Setting [43.110187812734864]
視覚的説明(可用性マップ)、自然言語の説明、両方のモダリティの組み合わせの3種類の説明を評価した。
テキストに基づく説明は、高い信頼度をもたらすことが分かっており、従順マップと組み合わせることで軽減される。
また、説明の質、すなわち、それがどれだけ事実的に正しい情報であり、それがAIの正しさとどの程度一致しているかが、異なる説明タイプの有用性に大きく影響していることも観察します。
論文 参考訳(メタデータ) (2024-10-16T06:43:02Z) - A Multimodal Automated Interpretability Agent [63.8551718480664]
MAIAは、ニューラルモデルを使用して、ニューラルモデル理解タスクを自動化するシステムである。
まず、画像の学習表現における(ニューロンレベルの)特徴を記述できるMAIAの能力を特徴付ける。
次に、MAIAは、刺激的な特徴に対する感度の低下と、誤分類される可能性のある入力を自動的に識別する2つの追加の解釈可能性タスクに役立てることができることを示す。
論文 参考訳(メタデータ) (2024-04-22T17:55:11Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
複数のインスタンス学習モデルを説明するための4つの属性法について検討する。
急性骨髄性白血病の2つのデータセットと100万以上の単細胞画像について検討した。
我々は、属性マップと医療専門家の注釈を比較し、モデルの意思決定が人間の基準とどのように異なるかを確認する。
論文 参考訳(メタデータ) (2023-03-15T14:00:11Z) - ExAID: A Multimodal Explanation Framework for Computer-Aided Diagnosis
of Skin Lesions [4.886872847478552]
ExAID(Explainable AI for Dermatology)は、バイオメディカル画像解析のための新しいフレームワークである。
マルチモーダルな概念に基づく説明を提供する。
他の生体イメージング分野でも同様の応用の基盤となるだろう。
論文 参考訳(メタデータ) (2022-01-04T17:11:28Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
反実用説明システムは、入力画像を変更して反実用推論を可能にする。
本稿では, 対向画像から画像への変換技術に基づく, 対向画像の説明を新たに生成する手法を提案する。
その結果,我々のアプローチは,2つの最先端技術システムよりも,メンタルモデル,説明満足度,信頼度,感情,自己効力に関して有意に優れた結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-12-22T10:08:05Z) - Explanation from Specification [3.04585143845864]
我々は、説明のタイプが仕様によって導かれるアプローチを定式化する。
議論理論を用いたベイズ的ネットワークの説明とグラフニューラルネットワークの説明の2つの例について論じる。
このアプローチは科学哲学における説明理論に動機付けられており、機械学習の役割に関する科学哲学における現在の疑問と関連づけられている。
論文 参考訳(メタデータ) (2020-12-13T23:27:48Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。