論文の概要: RAGulating Compliance: A Multi-Agent Knowledge Graph for Regulatory QA
- arxiv url: http://arxiv.org/abs/2508.09893v1
- Date: Wed, 13 Aug 2025 15:51:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-14 20:42:00.948313
- Title: RAGulating Compliance: A Multi-Agent Knowledge Graph for Regulatory QA
- Title(参考訳): RAGulating Compliance: 規制QAのためのマルチエージェント知識グラフ
- Authors: Bhavik Agarwal, Hemant Sunil Jomraj, Simone Kaplunov, Jack Krolick, Viktoria Rojkova,
- Abstract要約: 規制コンプライアンス質問応答(QA)は、正確で検証可能な情報を必要とする。
我々は、レギュレーション三重項の知識グラフ(KG)とレトリーバル拡張生成(RAG)を統合する新しいマルチエージェントフレームワークを提案する。
我々のハイブリッドシステムは、複雑な規制クエリにおいて従来の手法よりも優れており、組込み三重項による事実の正しさが保証されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regulatory compliance question answering (QA) requires precise, verifiable information, and domain-specific expertise, posing challenges for Large Language Models (LLMs). In this work, we present a novel multi-agent framework that integrates a Knowledge Graph (KG) of Regulatory triplets with Retrieval-Augmented Generation (RAG) to address these demands. First, agents build and maintain an ontology-free KG by extracting subject--predicate--object (SPO) triplets from regulatory documents and systematically cleaning, normalizing, deduplicating, and updating them. Second, these triplets are embedded and stored along with their corresponding textual sections and metadata in a single enriched vector database, allowing for both graph-based reasoning and efficient information retrieval. Third, an orchestrated agent pipeline leverages triplet-level retrieval for question answering, ensuring high semantic alignment between user queries and the factual "who-did-what-to-whom" core captured by the graph. Our hybrid system outperforms conventional methods in complex regulatory queries, ensuring factual correctness with embedded triplets, enabling traceability through a unified vector database, and enhancing understanding through subgraph visualization, providing a robust foundation for compliance-driven and broader audit-focused applications.
- Abstract(参考訳): 規則に準拠した質問応答(QA)には、正確で検証可能な情報、ドメイン固有の専門知識が必要で、LLM(Large Language Models)の課題を提起する。
本研究では,これらの要求に対処するために,レギュレーション三重項の知識グラフ(KG)とRetrieval-Augmented Generation(RAG)を統合する新しいマルチエージェントフレームワークを提案する。
第一に、エージェントは、規制文書から主題-述語-対象(SPO)三つ子を抽出し、体系的にクリーニングし、正規化し、分解し、更新することで、オントロジーのないKGを構築し、維持する。
第2に、これらの三重項は、対応するテキストセクションとメタデータと共に、単一のリッチなベクトルデータベースに埋め込まれ、グラフベースの推論と効率的な情報検索の両方を可能にする。
第三に、オーケストレーションされたエージェントパイプラインは、質問応答のためのトリプルトレベルの検索を活用して、ユーザクエリと、グラフがキャプチャした事実上の"全体"コア間のセマンティックなアライメントを確保する。
当社のハイブリッドシステムは,複雑な規制クエリにおいて従来の手法よりも優れ,組込み三重項による事実的正しさの確保,統合ベクタデータベースによるトレーサビリティの実現,サブグラフ可視化による理解の強化,コンプライアンス駆動で広範な監査対象アプリケーションのための堅牢な基盤を提供する。
関連論文リスト
- Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling [83.78874399606379]
テスト時間スケーリングを備えたマルチエージェント協調フレームワークであるMACTを提案する。
4つの異なる小規模エージェントから構成され、明確に定義された役割と効果的なコラボレーションがある。
一般および数学的タスクの能力を犠牲にすることなく、より小さなパラメータスケールで優れた性能を示す。
論文 参考訳(メタデータ) (2025-08-05T12:52:09Z) - Benchmarking Multimodal Understanding and Complex Reasoning for ESG Tasks [56.350173737493215]
環境・社会・ガバナンス(ESG)報告は、持続可能性の実践の評価、規制コンプライアンスの確保、財務透明性の促進に不可欠である。
MMESGBenchは、マルチモーダル理解と複雑な推論を、構造的に多種多様なマルチソースESG文書間で評価するための、最初のベンチマークデータセットである。
MMESGBenchは、45のESG文書から得られた933の検証済みQAペアで構成され、7つの異なるドキュメントタイプと3つの主要なESGソースカテゴリにまたがる。
論文 参考訳(メタデータ) (2025-07-25T03:58:07Z) - Respecting Temporal-Causal Consistency: Entity-Event Knowledge Graphs for Retrieval-Augmented Generation [69.45495166424642]
我々は,物語文書における時間的,因果的,文字的整合性を理解するために,頑健で差別的なQAベンチマークを開発する。
次に、バイナリマッピングでリンクされたエンティティとイベントのサブグラフを分離したまま保持するデュアルグラフフレームワークであるEntity-Event RAG(E2RAG)を紹介します。
ChronoQA全体で、我々のアプローチは最先端の非構造化およびKGベースのRAGベースラインよりも優れており、因果一貫性クエリや文字整合性クエリが顕著である。
論文 参考訳(メタデータ) (2025-06-06T10:07:21Z) - Verify-in-the-Graph: Entity Disambiguation Enhancement for Complex Claim Verification with Interactive Graph Representation [3.864321514889099]
グラフ表現 - 入力クレームは構造化三重項に分解され、構造化情報と非構造化情報の両方を統合するグラフベースの表現を形成する。
論文 参考訳(メタデータ) (2025-05-29T02:02:55Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
大きな言語モデル(LLM)は目覚ましい能力を示しているが、幻覚や時代遅れの情報といった問題に苦戦している。
Retrieval-augmented Generation (RAG) は、情報検索システム(IR)を用いて、外部知識のLLM出力を基底にすることで、これらの問題に対処する。
本稿では、検索後句における新しい推論誘導二重アライメントフレームワークであるAlign-GRAGを提案する。
論文 参考訳(メタデータ) (2025-05-22T05:15:27Z) - Divide by Question, Conquer by Agent: SPLIT-RAG with Question-Driven Graph Partitioning [18.96570718233786]
SPLIT-RAGは、質問駆動セマンティックグラフ分割と協調サブグラフ検索による制限に対処するマルチエージェントRAGフレームワークである。
革新的なフレームワークは、まずリンク情報のセマンティック分割を作成し、次にタイプ特化知識ベースを使用してマルチエージェントRAGを実現する。
属性対応グラフセグメンテーションは、知識グラフを意味的に一貫性のあるサブグラフに分割し、サブグラフが異なるクエリタイプと整合することを保証する。
階層的なマージモジュールは、論理的検証を通じて、部分グラフ由来の解答間の矛盾を解消する。
論文 参考訳(メタデータ) (2025-05-20T06:44:34Z) - DO-RAG: A Domain-Specific QA Framework Using Knowledge Graph-Enhanced Retrieval-Augmented Generation [4.113142669523488]
ドメイン固有のQAシステムは、生成頻度を必要とするが、構造化専門家の知識に基づく高い事実精度を必要とする。
本稿では,マルチレベル知識グラフ構築と意味ベクトル検索を統合した,スケーラブルでカスタマイズ可能なハイブリッドQAフレームワークであるDO-RAGを提案する。
論文 参考訳(メタデータ) (2025-05-17T06:40:17Z) - HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation [11.53083922927901]
HM-RAGは階層型マルチエージェントマルチモーダルRAGフレームワークである。
構造化、非構造化、グラフベースのデータ間での動的知識合成のための協調知能の先駆者である。
論文 参考訳(メタデータ) (2025-04-13T06:55:33Z) - Knowledge Graph Completion with Relation-Aware Anchor Enhancement [50.50944396454757]
関係認識型アンカー強化知識グラフ補完法(RAA-KGC)を提案する。
まず、ヘッダーのリレーショナル・アウェア・エリア内でアンカー・エンティティを生成します。
次に、アンカーの近傍に埋め込まれたクエリを引っ張ることで、ターゲットのエンティティマッチングに対してより差別的になるように調整する。
論文 参考訳(メタデータ) (2025-04-08T15:22:08Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Query-Specific Knowledge Graphs for Complex Finance Topics [6.599344783327053]
ドメインの専門家が挑戦的な質問を作成できるCODECデータセットに重点を置いています。
最先端のランキングシステムには改善の余地があることが示される。
実体と文書の関連性は正の相関関係にあることを示す。
論文 参考訳(メタデータ) (2022-11-08T10:21:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。