論文の概要: Shaping Event Backstories to Estimate Potential Emotion Contexts
- arxiv url: http://arxiv.org/abs/2508.09954v1
- Date: Wed, 13 Aug 2025 17:15:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-14 20:42:00.969949
- Title: Shaping Event Backstories to Estimate Potential Emotion Contexts
- Title(参考訳): 潜在的な感情コンテキストを推定するためのイベントバックストリーの形成
- Authors: Johannes Schäfer, Roman Klinger,
- Abstract要約: イベント記述に合理的なコンテキストを追加する新しいアプローチを提案する。
私たちのゴールは、これらの豊富なコンテキストが人間のアノテータが感情をより確実にアノテートできるかどうかを理解することです。
- 参考スコア(独自算出の注目度): 9.088303226909277
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Emotion analysis is an inherently ambiguous task. Previous work studied annotator properties to explain disagreement, but this overlooks the possibility that ambiguity may stem from missing information about the context of events. In this paper, we propose a novel approach that adds reasonable contexts to event descriptions, which may better explain a particular situation. Our goal is to understand whether these enriched contexts enable human annotators to annotate emotions more reliably. We disambiguate a target event description by automatically generating multiple event chains conditioned on differing emotions. By combining techniques from short story generation in various settings, we achieve coherent narratives that result in a specialized dataset for the first comprehensive and systematic examination of contextualized emotion analysis. Through automatic and human evaluation, we find that contextual narratives enhance the interpretation of specific emotions and support annotators in producing more consistent annotations.
- Abstract(参考訳): 感情分析は本質的に曖昧なタスクである。
従来の研究は、意見の不一致を説明するためにアノテーション特性を研究していたが、これは曖昧さが出来事の文脈に関する情報の欠落から生じる可能性がある可能性を見落としている。
本稿では,イベント記述に合理的な文脈を加える新しい手法を提案する。
私たちのゴールは、これらの豊富なコンテキストが人間のアノテータが感情をより確実にアノテートできるかどうかを理解することです。
我々は、感情の異なる複数のイベントチェーンを自動生成することで、対象のイベント記述を曖昧にする。
様々な場面で短いストーリー生成の技術を組み合わせることで、文脈化された感情分析を包括的かつ体系的に検証するための特別なデータセットをもたらすコヒーレントな物語を実現する。
自動的および人的評価により、文脈的物語は特定の感情の解釈を強化し、より一貫性のあるアノテーションを生成するアノテータを支援することが分かる。
関連論文リスト
- Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - Unsupervised Extractive Summarization of Emotion Triggers [56.50078267340738]
我々は、感情を共同で検出し、トリガーを要約できる新しい教師なし学習モデルを開発した。
Emotion-Aware Pagerankと題された私たちのベストアプローチは、外部ソースからの感情情報と言語理解モジュールを組み合わせたものです。
論文 参考訳(メタデータ) (2023-06-02T11:07:13Z) - Natural Language Processing for Cognitive Analysis of Emotions [0.0]
本稿では,感情とその原因を探索する新たなアノテーション手法と,感情場面の自伝的記述からなる新たなフランス語データセットを提案する。
テキストは、A. Finkelによって開発された感情の認知分析を適用して、人々が感情管理を改善する手助けをすることで収集された。
論文 参考訳(メタデータ) (2022-10-11T09:47:00Z) - x-enVENT: A Corpus of Event Descriptions with Experiencer-specific
Emotion and Appraisal Annotations [13.324006587838523]
感情分析のための分類設定は、感情のエピソードに関与する異なる意味的役割を含む統合的な方法で行うべきであると論じる。
心理学における評価理論に基づいて、我々は、記述された出来事記述の英文コーパスを編纂する。
この記述には感情に満ちた状況が描かれており、感情に反応した人々の言及が含まれている。
論文 参考訳(メタデータ) (2022-03-21T12:02:06Z) - Emotion Carrier Recognition from Personal Narratives [74.24768079275222]
パーソナル・ナラティブズ(Personal Narratives、PN)は、自分の経験から事実、出来事、思考を回想するものである。
感情キャリア認識(ECR)のための新しい課題を提案する。
論文 参考訳(メタデータ) (2020-08-17T17:16:08Z) - BiERU: Bidirectional Emotional Recurrent Unit for Conversational
Sentiment Analysis [18.1320976106637]
会話感情分析と単文感情分析の主な違いは、文脈情報の存在である。
既存のアプローチでは、会話内の異なるパーティを区別し、コンテキスト情報をモデル化するために複雑なディープラーニング構造を採用している。
本稿では,会話感情分析のための双方向感情的反復単位という,高速でコンパクトでパラメータ効率のよい非依存フレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-31T11:13:13Z) - A computational model implementing subjectivity with the 'Room Theory'.
The case of detecting Emotion from Text [68.8204255655161]
本研究は,テキスト分析における主観性と一般的文脈依存性を考慮した新しい手法を提案する。
単語間の類似度を用いて、ベンチマーク中の要素の相対的関連性を抽出することができる。
この方法は、主観的評価がテキストの相対値や意味を理解するために関係しているすべてのケースに適用できる。
論文 参考訳(メタデータ) (2020-05-12T21:26:04Z) - Annotation of Emotion Carriers in Personal Narratives [69.07034604580214]
我々は、個人的物語(PN) - 話されたり書かれたり - 事実、出来事、思考の記憶 - を理解する問題に興味を持っている。
PNでは、感情担体(英: emotion carriers)は、ユーザの感情状態を最もよく説明する音声またはテキストセグメントである。
本研究は,音声対話における感情担持者を特定するためのアノテーションモデルを提案し,評価する。
論文 参考訳(メタデータ) (2020-02-27T15:42:39Z) - A Deep Neural Framework for Contextual Affect Detection [51.378225388679425]
感情を持たない短い単純なテキストは、その文脈と共に読むときに強い感情を表現することができる。
文中の単語の相互依存を学習する文脈影響検出フレームワークを提案する。
論文 参考訳(メタデータ) (2020-01-28T05:03:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。