論文の概要: Natural Language Processing for Cognitive Analysis of Emotions
- arxiv url: http://arxiv.org/abs/2210.05296v1
- Date: Tue, 11 Oct 2022 09:47:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 15:46:41.546952
- Title: Natural Language Processing for Cognitive Analysis of Emotions
- Title(参考訳): 感情の認知分析のための自然言語処理
- Authors: Gustave Cortal (LMF, ENS Paris Saclay), Alain Finkel (LMF, ENS Paris
Saclay, IUF), Patrick Paroubek (LISN), Lina Ye (LMF)
- Abstract要約: 本稿では,感情とその原因を探索する新たなアノテーション手法と,感情場面の自伝的記述からなる新たなフランス語データセットを提案する。
テキストは、A. Finkelによって開発された感情の認知分析を適用して、人々が感情管理を改善する手助けをすることで収集された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion analysis in texts suffers from two major limitations: annotated
gold-standard corpora are mostly small and homogeneous, and emotion
identification is often simplified as a sentence-level classification problem.
To address these issues, we introduce a new annotation scheme for exploring
emotions and their causes, along with a new French dataset composed of
autobiographical accounts of an emotional scene. The texts were collected by
applying the Cognitive Analysis of Emotions developed by A. Finkel to help
people improve on their emotion management. The method requires the manual
analysis of an emotional event by a coach trained in Cognitive Analysis. We
present a rule-based approach to automatically annotate emotions and their
semantic roles (e.g. emotion causes) to facilitate the identification of
relevant aspects by the coach. We investigate future directions for emotion
analysis using graph structures.
- Abstract(参考訳): テキストにおける感情分析には2つの大きな制限がある: 注釈付き金標準コーパスはほとんどが小さく均質であり、感情識別は文章レベルの分類問題として単純化される。
これらの問題に対処するために,感情とその原因を探索するための新しいアノテーションスキームと,感情シーンの自伝的説明からなる新しいフランス語データセットを紹介する。
テキストは、A. Finkelによって開発された感情の認知分析を適用して、人々が感情管理を改善する手助けをした。
この方法は、認知分析で訓練されたコーチによる感情イベントの手動分析を必要とする。
コーチによる関連する側面の識別を容易にするために,感情とその意味的役割(感情原因など)を自動的に注釈するルールベースアプローチを提案する。
グラフ構造を用いた感情分析の今後の方向性について検討する。
関連論文リスト
- Towards a Generative Approach for Emotion Detection and Reasoning [0.7366405857677227]
大規模言語モデルを用いたゼロショット感情検出と感情推論のための新しいアプローチを提案する。
本論文は,テキストに対する感情検出と感情推論の課題に共同で対処するための生成的アプローチを用いた最初の研究である。
論文 参考訳(メタデータ) (2024-08-09T07:20:15Z) - Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
対話における感情推論(Emotion Deducing Explanation in Dialogues)を提案する。
EDENは感情と原因を明確な考え方で認識する。
大規模言語モデル(LLM)が感情や原因をよりよく認識するのに役立ちます。
論文 参考訳(メタデータ) (2024-06-07T08:58:29Z) - ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
CEE(Causal Emotion Entailment)は、ターゲット発話で表現される感情を刺激する会話における因果発話を特定することを目的としている。
CEEにおける現在の研究は、主に会話のセマンティックな相互作用と感情的な相互作用をモデル化することに焦点を当てている。
本研究では,会話中の感情表現から刺激を推測するために,ステップバイステップの推論手法である感情・因果関係(ECR-Chain)を導入する。
論文 参考訳(メタデータ) (2024-05-17T15:45:08Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - Where are We in Event-centric Emotion Analysis? Bridging Emotion Role
Labeling and Appraisal-based Approaches [10.736626320566707]
テキストにおける感情分析という用語は、様々な自然言語処理タスクを仮定する。
感情と出来事は2つの方法で関連していると我々は主張する。
我々は,NLPモデルに心理的評価理論を組み込んで事象を解釈する方法について議論する。
論文 参考訳(メタデータ) (2023-09-05T09:56:29Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
異なる感情の音声サンプル間の相対的な差を測定する新しい定式化を提案する。
次に、私たちの定式化を、シーケンスからシーケンスまでの感情的なテキストから音声へのフレームワークに組み込む。
実行時に、感情属性ベクトルを手動で定義し、所望の感情混合を生成するためにモデルを制御する。
論文 参考訳(メタデータ) (2022-08-11T15:45:58Z) - x-enVENT: A Corpus of Event Descriptions with Experiencer-specific
Emotion and Appraisal Annotations [13.324006587838523]
感情分析のための分類設定は、感情のエピソードに関与する異なる意味的役割を含む統合的な方法で行うべきであると論じる。
心理学における評価理論に基づいて、我々は、記述された出来事記述の英文コーパスを編纂する。
この記述には感情に満ちた状況が描かれており、感情に反応した人々の言及が含まれている。
論文 参考訳(メタデータ) (2022-03-21T12:02:06Z) - Multi-Task Learning and Adapted Knowledge Models for Emotion-Cause
Extraction [18.68808042388714]
感情認識と感情原因検出の両方に共同で取り組むソリューションを提案する。
暗黙的に表現された感情を理解する上で,常識的知識が重要な役割を担っていることを考慮し,新しい手法を提案する。
共通センス推論とマルチタスクフレームワークを含む場合,両タスクのパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-06-17T20:11:04Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
外部知識の不足により、感情的な対話システムは暗黙の感情を知覚し、限られた対話履歴から感情的な対話を学ぶことが困難になる。
本研究では,情緒的対話生成における感情を明確に理解し,表現するために,常識的知識や情緒的語彙的知識などの外部知識を活用することを提案する。
論文 参考訳(メタデータ) (2020-09-21T09:21:52Z) - Sentiment Analysis: Automatically Detecting Valence, Emotions, and Other
Affectual States from Text [31.87319293259599]
本稿では,感情分析研究の概要を概観する。
これには、フィールドの起源、タスクの豊富な風景、課題、使用するメソッドとリソースの調査、アプリケーションが含まれる。
我々は、慎重に前向きに考えることなく、感情分析が有害な結果をもたらす可能性について論じる。
論文 参考訳(メタデータ) (2020-05-25T01:37:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。