論文の概要: Agentic AI Frameworks: Architectures, Protocols, and Design Challenges
- arxiv url: http://arxiv.org/abs/2508.10146v1
- Date: Wed, 13 Aug 2025 19:16:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 22:24:48.094857
- Title: Agentic AI Frameworks: Architectures, Protocols, and Design Challenges
- Title(参考訳): Agentic AIフレームワーク - アーキテクチャ、プロトコル、設計上の課題
- Authors: Hana Derouiche, Zaki Brahmi, Haithem Mazeni,
- Abstract要約: 人工知能では、人工知能エージェントが目標指向の自律性、文脈推論、動的マルチエージェント調整を示す。
本稿では,CrewAI,LangGraph,AutoGen,Semantic Kernel,Agno,Google ADK,MetaGPTなど,主要なエージェントAIフレームワークの体系的レビューと比較分析を行う。
この分野における重要な制限、新たなトレンド、オープンな課題を特定します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of Large Language Models (LLMs) has ushered in a transformative paradigm in artificial intelligence, Agentic AI, where intelligent agents exhibit goal-directed autonomy, contextual reasoning, and dynamic multi-agent coordination. This paper provides a systematic review and comparative analysis of leading Agentic AI frameworks, including CrewAI, LangGraph, AutoGen, Semantic Kernel, Agno, Google ADK, and MetaGPT, evaluating their architectural principles, communication mechanisms, memory management, safety guardrails, and alignment with service-oriented computing paradigms. Furthermore, we identify key limitations, emerging trends, and open challenges in the field. To address the issue of agent communication, we conduct an in-depth analysis of protocols such as the Contract Net Protocol (CNP), Agent-to-Agent (A2A), Agent Network Protocol (ANP), and Agora. Our findings not only establish a foundational taxonomy for Agentic AI systems but also propose future research directions to enhance scalability, robustness, and interoperability. This work serves as a comprehensive reference for researchers and practitioners working to advance the next generation of autonomous AI systems.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は、人工知能の変革的パラダイムであるエージェントAIにおいて、インテリジェントエージェントが目標指向の自律性、コンテキスト推論、動的マルチエージェント調整を示す。
本稿では、CrewAI、LangGraph、AutoGen、Semantic Kernel、Agno、Google ADK、MetaGPTを含む主要なエージェントAIフレームワークの体系的レビューと比較分析を行い、アーキテクチャ原則、通信メカニズム、メモリ管理、安全ガードレール、サービス指向コンピューティングパラダイムとの整合性を評価する。
さらに、重要な制限、新しいトレンド、そしてこの分野におけるオープンな課題を特定します。
エージェント通信の問題に対処するため、契約ネットプロトコル(CNP)、エージェント・ツー・エージェント(A2A)、エージェント・ネットワーク・プロトコル(ANP)、Agoraなどのプロトコルを詳細に分析する。
我々の研究結果はエージェントAIシステムの基本的な分類法を確立するだけでなく、スケーラビリティ、堅牢性、相互運用性を高めるための今後の研究方向も提案している。
この研究は、次世代の自律型AIシステムの推進に取り組んでいる研究者や実践者にとって、包括的な参考となる。
関連論文リスト
- Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
大規模言語モデル(LLM)を活用したAIエージェントの出現は、エージェントWebに対する重要な転換点である。
このパラダイムでは、エージェントが直接対話して、ユーザに代わって複雑なタスクを計画、コーディネート、実行します。
本稿では,エージェントWebの理解と構築のための構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-28T17:58:12Z) - Agentic Satellite-Augmented Low-Altitude Economy and Terrestrial Networks: A Survey on Generative Approaches [76.12691010182802]
本調査は,衛星搭載低高度経済と地上ネットワーク(SLAETN)におけるエージェント人工知能(AI)の実現に焦点をあてる。
SLAETNのアーキテクチャと特徴を紹介するとともに,衛星,空中,地上コンポーネントの統合において生じる課題を分析する。
これらのモデルが,コミュニケーション強化,セキュリティとプライバシ保護,インテリジェントな衛星タスクという,3つの領域にわたるエージェント機能をどのように強化するかを検討する。
論文 参考訳(メタデータ) (2025-07-19T14:07:05Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - Distinguishing Autonomous AI Agents from Collaborative Agentic Systems: A Comprehensive Framework for Understanding Modern Intelligent Architectures [0.0]
大規模言語モデルの出現は、人工知能の2つの異なる相互接続パラダイム、すなわちスタンドアロンAIエージェントと協調エージェントAIエコシステムを触媒した。
本研究は, 運用原則, 構造構成, 配置方法論の体系的解析を通じて, これらのアーキテクチャを識別するための決定的な枠組みを確立する。
論文 参考訳(メタデータ) (2025-06-02T08:52:23Z) - From Large AI Models to Agentic AI: A Tutorial on Future Intelligent Communications [57.38526350775472]
このチュートリアルは、大規模人工知能モデル(LAM)とエージェントAI技術の原則、設計、応用に関する体系的な紹介を提供する。
我々は,6G通信の背景を概説し,LAMからエージェントAIへの技術的進化を概説し,チュートリアルのモチベーションと主な貢献を明らかにする。
論文 参考訳(メタデータ) (2025-05-28T12:54:07Z) - AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges [0.36868085124383626]
この研究はAIエージェントとエージェントAIを区別し、構造化された概念分類、アプリケーションマッピング、課題分析を提供する。
ジェネレーティブAIは前駆体として位置づけられており、AIエージェントはツールの統合、エンジニアリングの促進、推論の強化を通じて前進している。
エージェントAIシステムは、マルチエージェントコラボレーション、動的タスク分解、永続メモリ、オーケストレーション自律性によって特徴付けられるパラダイムシフトを表している。
論文 参考訳(メタデータ) (2025-05-15T16:21:33Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
異種エージェント間のシームレスな相互接続、動的発見、協調的なオーケストレーションを可能にする基盤となるフレームワークとして、エージェントのインターネット(IoA)を紹介した。
我々は,機能通知と発見,適応通信プロトコル,動的タスクマッチング,コンセンサスとコンフリクト解決機構,インセンティブモデルなど,IoAの重要な運用イネーラを分析した。
論文 参考訳(メタデータ) (2025-05-12T02:04:37Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。