論文の概要: A Vision-Language Pre-training Model-Guided Approach for Mitigating Backdoor Attacks in Federated Learning
- arxiv url: http://arxiv.org/abs/2508.10315v1
- Date: Thu, 14 Aug 2025 03:39:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 22:24:48.173836
- Title: A Vision-Language Pre-training Model-Guided Approach for Mitigating Backdoor Attacks in Federated Learning
- Title(参考訳): フェデレーション学習におけるバックドアアタックの軽減のためのビジョンランゲージ事前学習モデルによるアプローチ
- Authors: Keke Gai, Dongjue Wang, Jing Yu, Liehuang Zhu, Qi Wu,
- Abstract要約: Federated Learning(FL)の既存のバックドア防御メソッドは、均質なクライアントデータ分散の仮定やクリーンサーブデータセットの可用性に依存しています。
視覚言語事前学習モデルのゼロショット学習機能を活用したFLバックドアディフェンスフレームワークCLIP-Fedを提案する。
CIFAR-10-LTでは2.03%、CIFAR-10-LTでは1.35%、平均MAでは7.92%、0.48%である。
- 参考スコア(独自算出の注目度): 23.64920988914223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing backdoor defense methods in Federated Learning (FL) rely on the assumption of homogeneous client data distributions or the availability of a clean serve dataset, which limits the practicality and effectiveness. Defending against backdoor attacks under heterogeneous client data distributions while preserving model performance remains a significant challenge. In this paper, we propose a FL backdoor defense framework named CLIP-Fed, which leverages the zero-shot learning capabilities of vision-language pre-training models. By integrating both pre-aggregation and post-aggregation defense strategies, CLIP-Fed overcomes the limitations of Non-IID imposed on defense effectiveness. To address privacy concerns and enhance the coverage of the dataset against diverse triggers, we construct and augment the server dataset using the multimodal large language model and frequency analysis without any client samples. To address class prototype deviations caused by backdoor samples and eliminate the correlation between trigger patterns and target labels, CLIP-Fed aligns the knowledge of the global model and CLIP on the augmented dataset using prototype contrastive loss and Kullback-Leibler divergence. Extensive experiments on representative datasets validate the effectiveness of CLIP-Fed. Compared to state-of-the-art methods, CLIP-Fed achieves an average reduction in ASR, i.e., 2.03\% on CIFAR-10 and 1.35\% on CIFAR-10-LT, while improving average MA by 7.92\% and 0.48\%, respectively.
- Abstract(参考訳): 既存のFL(Federated Learning)のバックドア防御手法は、均質なクライアントデータ分散やクリーンサーブデータセットの可用性という前提に依存しており、実用性と有効性を制限する。
不均一なクライアントデータ分散下でのバックドア攻撃に対する防御とモデルパフォーマンスの維持は依然として大きな課題である。
本稿では,視覚言語事前学習モデルのゼロショット学習機能を活用したFLバックドアディフェンスフレームワークCLIP-Fedを提案する。
プレアグリゲーションとポストアグリゲーションの両防衛戦略を統合することで、CLIP-Fedは防衛効果に課されるNon-IIDの限界を克服する。
プライバシの懸念に対処し、多様なトリガーに対するデータセットのカバレッジを高めるため、クライアントサンプルを使わずにマルチモーダルな大規模言語モデルと周波数分析を用いてサーバデータセットを構築し、拡張する。
バックドアサンプルによるクラスプロトタイプの偏差に対処し、トリガパターンとターゲットラベルの相関をなくすため、CLIP-Fedはプロトタイプのコントラスト損失とKullback-Leiblerの発散を利用して、グローバルモデルとCLIPの知識をデータセット上に整合させる。
代表的なデータセットに関する大規模な実験は、CLIP-Fedの有効性を検証する。
最先端の手法と比較して、CLIP-Fedは平均ASR、すなわちCIFAR-10では2.03\%、CIFAR-10-LTでは1.35\%、平均MAでは7.92\%、0.48\%の低下を達成する。
関連論文リスト
- Defending the Edge: Representative-Attention for Mitigating Backdoor Attacks in Federated Learning [7.808916974942399]
不均一エッジデバイスは、多種多様で非独立で、同一に分散された(非IID)データを生成する。
本稿では, 悪意のあるクライアントと良識を区別するための, FeRA という, 表現力に基づく防衛機構を提案する。
本評価では,エッジデバイスに典型的な非IIDデータ分散に挑戦するなど,さまざまなFLシナリオにおけるFeRAの堅牢性を示す。
論文 参考訳(メタデータ) (2025-05-15T13:44:32Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks
through Attributed Client Graph Clustering [116.4277292854053]
Federated Learning (FL)は、データ共有なしで協調的なモデルトレーニングを提供する。
FLはバックドア攻撃に弱いため、有害なモデル重みがシステムの整合性を損なう。
本稿では、悪意のあるクライアントの識別を属性グラフクラスタリング問題として再解釈する保護フレームワークであるG$2$uardFLを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:15:04Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Robust Contrastive Language-Image Pre-training against Data Poisoning
and Backdoor Attacks [52.26631767748843]
ROCLIPは、ターゲットデータ中毒やバックドア攻撃に対して、マルチモーダル視覚言語モデルを堅牢に学習するための最初の効果的な方法である。
ROCLIPは、比較的大きく多様なランダムキャプションのプールを考慮することにより、有毒な撮像対の関連を効果的に破壊する。
実験の結果,ROCLIPは訓練前のCLIPモデルにおいて,最先端のデータ中毒やバックドア攻撃を未然に防ぐことができることがわかった。
論文 参考訳(メタデータ) (2023-03-13T04:49:46Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
フェデレートラーニング(Federated Learning)は、プライバシの問題に対処するために設計された分散フレームワークである。
新たなアタックサーフェスを導入しており、データは独立に、そしてIdentically Distributedである場合、特に困難である。
我々は,モデル中毒に対する簡易かつ効果的な新しい防御アルゴリズムであるFedCCを提案する。
論文 参考訳(メタデータ) (2022-12-05T01:52:32Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Invariant Aggregator for Defending against Federated Backdoor Attacks [28.416262423174796]
フェデレートラーニングは、プライベートデータを直接共有することなく、複数のクライアントで高ユーティリティモデルをトレーニングすることを可能にする。
欠点として、フェデレートされた設定は、悪意のあるクライアントの存在下での様々な敵攻撃に対して、モデルを脆弱にする。
本稿では、集約された更新を一般的に有用である不変方向へリダイレクトする不変アグリゲータを提案する。
論文 参考訳(メタデータ) (2022-10-04T18:06:29Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
フェデレートラーニング(FL)は、グローバル機械学習モデルを、参加する労働者のセット間で分散されたローカルデータから学習することを可能にする。
FLは、学習モデルの完全性に悪影響を及ぼす標的の毒殺攻撃に対して脆弱である。
FL標的攻撃に対抗する手段として,textitFL-Defenderを提案する。
論文 参考訳(メタデータ) (2022-07-02T16:04:46Z) - Backdoor Defense in Federated Learning Using Differential Testing and
Outlier Detection [24.562359531692504]
バックドア攻撃からFLシステムを保護するための自動防御フレームワークであるDifFenseを提案する。
提案手法は,グローバルモデルの平均バックドア精度を4%以下に低減し,偽陰性率ゼロを達成する。
論文 参考訳(メタデータ) (2022-02-21T17:13:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。