論文の概要: Invariant Aggregator for Defending against Federated Backdoor Attacks
- arxiv url: http://arxiv.org/abs/2210.01834v4
- Date: Fri, 8 Mar 2024 20:32:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 17:56:53.404898
- Title: Invariant Aggregator for Defending against Federated Backdoor Attacks
- Title(参考訳): フェデレーションバックドア攻撃に対する防御のための不変アグリゲータ
- Authors: Xiaoyang Wang, Dimitrios Dimitriadis, Sanmi Koyejo, Shruti Tople
- Abstract要約: フェデレートラーニングは、プライベートデータを直接共有することなく、複数のクライアントで高ユーティリティモデルをトレーニングすることを可能にする。
欠点として、フェデレートされた設定は、悪意のあるクライアントの存在下での様々な敵攻撃に対して、モデルを脆弱にする。
本稿では、集約された更新を一般的に有用である不変方向へリダイレクトする不変アグリゲータを提案する。
- 参考スコア(独自算出の注目度): 28.416262423174796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning enables training high-utility models across several
clients without directly sharing their private data. As a downside, the
federated setting makes the model vulnerable to various adversarial attacks in
the presence of malicious clients. Despite the theoretical and empirical
success in defending against attacks that aim to degrade models' utility,
defense against backdoor attacks that increase model accuracy on backdoor
samples exclusively without hurting the utility on other samples remains
challenging. To this end, we first analyze the failure modes of existing
defenses over a flat loss landscape, which is common for well-designed neural
networks such as Resnet (He et al., 2015) but is often overlooked by previous
works. Then, we propose an invariant aggregator that redirects the aggregated
update to invariant directions that are generally useful via selectively
masking out the update elements that favor few and possibly malicious clients.
Theoretical results suggest that our approach provably mitigates backdoor
attacks and remains effective over flat loss landscapes. Empirical results on
three datasets with different modalities and varying numbers of clients further
demonstrate that our approach mitigates a broad class of backdoor attacks with
a negligible cost on the model utility.
- Abstract(参考訳): フェデレーション学習は、プライベートデータを直接共有することなく、複数のクライアント間で高可用性モデルのトレーニングを可能にする。
マイナス面として、フェデレーション設定は、悪意のあるクライアントの存在下で、様々な敵の攻撃に対して、モデルを脆弱にする。
モデルの実用性を低下させようとする攻撃に対する理論的かつ実証的な成功にもかかわらず、バックドアサンプルのモデルの精度を高めるバックドア攻撃に対する防御は、他のサンプルの実用性を損なうことなく、依然として困難である。
この目的のために、我々はまず、resnet(he et al., 2015)のようなよく設計されたニューラルネットワークでよく見られる、フラットなロスランドスケープにおける既存の防御の障害モードを解析します。
そこで我々は,無害なクライアントに好まれる更新要素を選択的にマスキングすることで,集約された更新を不変方向へリダイレクトする不変アグリゲータを提案する。
理論的には,本手法はバックドア攻撃を効果的に軽減し,平らな景観に対して有効であることを示唆している。
異なるモダリティと異なる数のクライアントを持つ3つのデータセットに対する実証的な結果は、我々のアプローチがモデルユーティリティーに無視できないコストで幅広いバックドア攻撃を緩和することを示している。
関連論文リスト
- Aggressive or Imperceptible, or Both: Network Pruning Assisted Hybrid Byzantines in Federated Learning [6.384138583754105]
フェデレートラーニング(FL)は、多種多様なクライアント(おそらくモバイルデバイス)が、一般化された機械学習モデルの生成に協力できるようにするために導入された。
多数のクライアントが参加しているため、各クライアントのプロファイルと検証が難しい場合が多いため、セキュリティ上の脅威が発生します。
本研究では,より高感度のNN位置のみを攻撃し,さらに時間とともに蓄積するハイブリッド・スパルス・ビザンチン攻撃を導入する。
論文 参考訳(メタデータ) (2024-04-09T11:42:32Z) - Shared Adversarial Unlearning: Backdoor Mitigation by Unlearning Shared
Adversarial Examples [67.66153875643964]
バックドア攻撃は、機械学習モデルに対する深刻なセキュリティ脅威である。
本稿では,小さなクリーンデータセットを用いて,バックドアモデルの浄化作業について検討する。
バックドアリスクと敵的リスクの関連性を確立することにより、バックドアリスクに対する新たな上限を導出する。
論文 参考訳(メタデータ) (2023-07-20T03:56:04Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - On the Vulnerability of Backdoor Defenses for Federated Learning [8.345632941376673]
Federated Learning(FL)は、クライアントのデータを共有することなく、グローバルモデルの共同トレーニングを可能にする、人気のある分散機械学習パラダイムである。
本稿では,現在の防衛機構が,フェデレートラーニングによるバックドアの脅威を真に中和するかどうかを考察する。
本稿では,新たなバックドア攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-01-19T17:02:02Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Dropout is NOT All You Need to Prevent Gradient Leakage [0.6021787236982659]
反復的勾配反転攻撃に対するドロップアウトの影響を解析する。
本稿では,クライアントデータとドロップアウトマスクを協調的に最適化する新しいインバージョンアタック(DIA)を提案する。
提案した攻撃は, 投棄によって引き起こされると思われる保護を回避し, 高い忠実度でクライアントデータを再構築する。
論文 参考訳(メタデータ) (2022-08-12T08:29:44Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
バックドアモデルは、事前に定義されたトリガーパターンが存在する場合、常にターゲットクラスを予測する。
一般的には、敵の訓練はバックドア攻撃に対する防御であると信じられている。
本稿では,様々なバックドア攻撃に対して良好な堅牢性を提供するハイブリッド戦略を提案する。
論文 参考訳(メタデータ) (2022-02-22T02:24:46Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
ディープニューラルネットワーク(DNN)は敵の雑音に弱い。
敵の強靭性は、敵の例を利用して改善することができる。
目に見えない種類の敵の例に基づいて訓練されたモデルは、一般的に、目に見えない種類の敵の例にうまく一般化できない。
論文 参考訳(メタデータ) (2021-06-09T12:49:54Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。