論文の概要: A Guide to Bayesian Optimization in Bioprocess Engineering
- arxiv url: http://arxiv.org/abs/2508.10642v1
- Date: Thu, 14 Aug 2025 13:38:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 22:24:48.334119
- Title: A Guide to Bayesian Optimization in Bioprocess Engineering
- Title(参考訳): バイオプロセス工学におけるベイズ最適化入門
- Authors: Maximilian Siska, Emma Pajak, Katrin Rosenthal, Antonio del Rio Chanona, Eric von Lieres, Laura Marie Helleckes,
- Abstract要約: このレビューはベイズ最適化の直感的で実践的な紹介を提供することを目的としている。
また、将来有望なアプリケーション領域とオープンアルゴリズムの課題を概説し、機械学習における将来の研究機会を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Bayesian optimization has become widely popular across various experimental sciences due to its favorable attributes: it can handle noisy data, perform well with relatively small datasets, and provide adaptive suggestions for sequential experimentation. While still in its infancy, Bayesian optimization has recently gained traction in bioprocess engineering. However, experimentation with biological systems is highly complex and the resulting experimental uncertainty requires specific extensions to classical Bayesian optimization. Moreover, current literature often targets readers with a strong statistical background, limiting its accessibility for practitioners. In light of these developments, this review has two aims: first, to provide an intuitive and practical introduction to Bayesian optimization; and second, to outline promising application areas and open algorithmic challenges, thereby highlighting opportunities for future research in machine learning.
- Abstract(参考訳): ベイズ最適化は、ノイズの多いデータを扱うことができ、比較的小さなデータセットでうまく機能し、逐次実験のために適応的な提案をすることができるなど、様々な実験科学で広く普及している。
ベイジアン最適化はまだ初期段階だが、最近はバイオプロセス工学の分野で注目を集めている。
しかし、生物学的システムによる実験は非常に複雑であり、その結果の実験的不確実性は古典的ベイズ最適化への特定の拡張を必要とする。
さらに、現在の文献は、強い統計的背景を持つ読者をターゲットにしており、実践者へのアクセシビリティを制限している。
第一に、ベイズ最適化の直感的で実践的な導入を提供すること、第二に、将来有望なアプリケーション領域の概要とアルゴリズム上の課題のオープン化、そして、機械学習における将来の研究機会の強調である。
関連論文リスト
- A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences [12.248793682283964]
個々のブラックボックス機能を最適化することは、タンパク質工学や薬物設計など、いくつかの領域において重要である。
我々は,高次元ベイズ最適化手法と標準化されたブラックボックス関数の集合を幅広くテストするための統一的なフレームワークを開発する。
これらのベンチマークの2つのコンポーネントはそれぞれ、柔軟でスケーラブルで容易に拡張可能なソフトウェアライブラリによってサポートされています。
論文 参考訳(メタデータ) (2024-06-07T08:39:40Z) - Human-Algorithm Collaborative Bayesian Optimization for Engineering Systems [0.0]
我々は、協調ベイズ最適化のためのアプローチを概説することで、データ駆動意思決定ループに人間を再導入する。
我々の手法は、人間は連続的な選択よりも離散的な選択をより効率的に行うことができるという仮説を生かしている。
本稿では, バイオプロセス最適化やリアクトル幾何設計を含む, 応用および数値ケーススタディにまたがるアプローチを実証する。
論文 参考訳(メタデータ) (2024-04-16T23:17:04Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
本研究では,非測定抽象特性に関する専門家の嗜好を代理モデルに組み込むための,人間とAIの協調型ベイズフレームワークを提案する。
優先判断において、誤った/誤解を招く専門家バイアスを処理できる効率的な戦略を提供する。
論文 参考訳(メタデータ) (2024-02-27T09:23:13Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
機械学習(ML)アプローチのようなデータ駆動の手法は、大きな設計空間を合理的に探索する可能性が高い。
本研究の目的は,これまでのバイオプロセス開発におけるML手法の適用例を示すことである。
論文 参考訳(メタデータ) (2022-10-04T13:48:59Z) - Fast Bayesian Optimization of Needle-in-a-Haystack Problems using
Zooming Memory-Based Initialization [73.96101108943986]
Needle-in-a-Haystack問題は、データセットのサイズに対して最適な条件が極端に不均衡であるときに発生する。
本稿では,従来のベイズ最適化原理に基づくズームメモリに基づく初期化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-26T23:57:41Z) - Bayesian Optimization in Materials Science: A Survey [4.037250810373225]
材料科学におけるベイズ最適化のアプローチについて調査する。
両者の間にはほとんど重複はない。
共同研究における共通の課題と機会を強調します。
論文 参考訳(メタデータ) (2021-07-29T18:45:10Z) - An Empirical Study of Assumptions in Bayesian Optimisation [61.19427472792523]
本研究では,ベイズ最適化に固有の従来的および非慣習的仮定を厳密に分析する。
超パラメータチューニングタスクの大多数は、不均一性と非定常性を示すと結論付けている。
これらの発見が実践者およびこの分野のさらなる研究の指針となることを願っている。
論文 参考訳(メタデータ) (2020-12-07T16:21:12Z) - Incorporating Expert Prior Knowledge into Experimental Design via
Posterior Sampling [58.56638141701966]
実験者は、グローバルな最適な場所に関する知識を得ることができる。
グローバル最適化に関する専門家の事前知識をベイズ最適化に組み込む方法は不明である。
効率の良いベイズ最適化手法は、大域的最適の後方分布の後方サンプリングによって提案されている。
論文 参考訳(メタデータ) (2020-02-26T01:57:36Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
本稿では,入力に敏感な制約付き最適化問題に対して,差分プライバシーを適用する方法について検討する。
本稿は, 自然仮定の下では, 大規模非線形最適化問題に対して, 双レベルモデルを効率的に解けることを示す。
論文 参考訳(メタデータ) (2020-01-26T20:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。