論文の概要: Advancing Autonomous Incident Response: Leveraging LLMs and Cyber Threat Intelligence
- arxiv url: http://arxiv.org/abs/2508.10677v1
- Date: Thu, 14 Aug 2025 14:20:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 22:24:48.351983
- Title: Advancing Autonomous Incident Response: Leveraging LLMs and Cyber Threat Intelligence
- Title(参考訳): 自律的なインシデント対応の強化 - LLMの活用とサイバー脅威インテリジェンス
- Authors: Amine Tellache, Abdelaziz Amara Korba, Amdjed Mokhtari, Horea Moldovan, Yacine Ghamri-Doudane,
- Abstract要約: セキュリティチームは、警告の疲労、高い偽陽性率、および大量の非構造化サイバー脅威情報(CTI)文書に圧倒されている。
本稿では,Large Language Models (LLMs) を利用してIRの自動化と拡張を行う新しいRAGベースのフレームワークを提案する。
提案手法では, CTIベクタデータベース内のNLPに基づく類似性検索と, 外部CTIプラットフォームへの標準クエリを組み合わせたハイブリッド検索機構を提案する。
- 参考スコア(独自算出の注目度): 3.2284427438223013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective incident response (IR) is critical for mitigating cyber threats, yet security teams are overwhelmed by alert fatigue, high false-positive rates, and the vast volume of unstructured Cyber Threat Intelligence (CTI) documents. While CTI holds immense potential for enriching security operations, its extensive and fragmented nature makes manual analysis time-consuming and resource-intensive. To bridge this gap, we introduce a novel Retrieval-Augmented Generation (RAG)-based framework that leverages Large Language Models (LLMs) to automate and enhance IR by integrating dynamically retrieved CTI. Our approach introduces a hybrid retrieval mechanism that combines NLP-based similarity searches within a CTI vector database with standardized queries to external CTI platforms, facilitating context-aware enrichment of security alerts. The augmented intelligence is then leveraged by an LLM-powered response generation module, which formulates precise, actionable, and contextually relevant incident mitigation strategies. We propose a dual evaluation paradigm, wherein automated assessment using an auxiliary LLM is systematically cross-validated by cybersecurity experts. Empirical validation on real-world and simulated alerts demonstrates that our approach enhances the accuracy, contextualization, and efficiency of IR, alleviating analyst workload and reducing response latency. This work underscores the potential of LLM-driven CTI fusion in advancing autonomous security operations and establishing a foundation for intelligent, adaptive cybersecurity frameworks.
- Abstract(参考訳): 効果的なインシデント対応(IR)はサイバー脅威の軽減に不可欠だが、セキュリティチームは警告の疲労、偽陽性率の高い、大量の非構造化サイバー脅威インテリジェンス(CTI)文書に圧倒されている。
CTIは、セキュリティ操作を充実させる大きな可能性を秘めているが、その広範囲で断片化された性質により、手作業による分析に時間がかかり、リソースが集中する。
このギャップを埋めるために、我々はLarge Language Models (LLMs)を活用して動的に取得したCTIを統合してIRを自動化・拡張する新しいRAG(Retrieval-Augmented Generation)ベースのフレームワークを導入する。
提案手法では,CTIベクタデータベース内のNLPに基づく類似性検索と外部CTIプラットフォームへの標準クエリを組み合わせたハイブリッド検索機構を導入し,セキュリティアラートのコンテキスト認識を容易にする。
人工知能はLLMを利用した応答生成モジュールによって活用され、正確で行動可能で、文脈的に関連するインシデント軽減戦略が定式化される。
本稿では, サイバーセキュリティの専門家によって, 補助LDMを用いた自動評価を体系的に相互検証する, 二重評価パラダイムを提案する。
実世界およびシミュレートされた警告に対する実証的な検証は、我々のアプローチがIRの正確性、文脈化、効率を高め、アナリストの作業負荷を軽減し、応答遅延を低減していることを示す。
この研究は、自律的なセキュリティ運用を進め、インテリジェントで適応的なサイバーセキュリティフレームワークの基盤を確立する上で、LLM主導のCTI融合の可能性を強調している。
関連論文リスト
- A Survey on Autonomy-Induced Security Risks in Large Model-Based Agents [45.53643260046778]
大規模言語モデル(LLM)の最近の進歩は、自律型AIエージェントの台頭を触媒している。
これらの大きなモデルエージェントは、静的推論システムからインタラクティブなメモリ拡張エンティティへのパラダイムシフトを示す。
論文 参考訳(メタデータ) (2025-06-30T13:34:34Z) - Expert-in-the-Loop Systems with Cross-Domain and In-Domain Few-Shot Learning for Software Vulnerability Detection [38.083049237330826]
本研究では,CWE(Common Weaknessions)を用いたPythonコードの識別をシミュレーションすることにより,ソフトウェア脆弱性評価におけるLLM(Large Language Models)の利用について検討する。
その結果,ゼロショットプロンプトは性能が低いが,少数ショットプロンプトは分類性能を著しく向上させることがわかった。
モデル信頼性、解釈可能性、敵の堅牢性といった課題は、将来の研究にとって重要な領域のままである。
論文 参考訳(メタデータ) (2025-06-11T18:43:51Z) - LLM-Assisted Proactive Threat Intelligence for Automated Reasoning [2.0427650128177]
本研究は、リアルタイムサイバーセキュリティ脅威の検出と応答を強化する新しいアプローチを提案する。
我々は,大規模言語モデル (LLM) とレトリーバル拡張生成システム (RAG) を連続的な脅威知能フィードに統合する。
論文 参考訳(メタデータ) (2025-04-01T05:19:33Z) - AttackSeqBench: Benchmarking Large Language Models' Understanding of Sequential Patterns in Cyber Attacks [13.082370325093242]
我々は,サイバー脅威インテリジェンス(CTI)レポートにおいて,攻撃シーケンスの理解と推論を行うLarge Language Models(LLM)能力を評価するためのベンチマークであるAttackSeqBenchを紹介する。
本ベンチマークでは,3つの質問応答(QA)タスクを対象とし,各タスクは,相手行動の粒度の違いに焦点をあてる。
サイバー攻撃のシーケンシャルなパターンを分析する上での、その強みと限界を強調しながら、高速思考とスロー思考の両方で広範な実験と分析を行う。
論文 参考訳(メタデータ) (2025-03-05T04:25:21Z) - Beyond the Surface: An NLP-based Methodology to Automatically Estimate CVE Relevance for CAPEC Attack Patterns [42.63501759921809]
本稿では,自然言語処理(NLP)を利用して,共通脆弱性・暴露(CAPEC)脆弱性と共通攻撃パターン・分類(CAPEC)攻撃パターンを関連付ける手法を提案する。
実験による評価は,最先端モデルと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2025-01-13T08:39:52Z) - CTINexus: Automatic Cyber Threat Intelligence Knowledge Graph Construction Using Large Language Models [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI知識抽出法は柔軟性と一般化性に欠ける。
我々は,データ効率の高いCTI知識抽出と高品質サイバーセキュリティ知識グラフ(CSKG)構築のための新しいフレームワークであるCTINexusを提案する。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities [1.0974825157329373]
本稿では,ジェネレーティブAIとLarge Language Models(LLMs)によるサイバーセキュリティの将来を概観する。
ハードウェア設計のセキュリティ、侵入検知、ソフトウェアエンジニアリング、設計検証、サイバー脅威インテリジェンス、マルウェア検出、フィッシング検出など、さまざまな領域にわたるLCMアプリケーションを探索する。
GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, LLaMA などのモデルの発展に焦点を当て, LLM の進化とその現状について概説する。
論文 参考訳(メタデータ) (2024-05-21T13:02:27Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
本稿では,従来のシステムにおけるリスク評価手法のようなツールを用いたリスク評価プロセスを提案する。
我々は、潜在的な脅威要因を特定し、脆弱性要因に対して依存するシステムコンポーネントをマッピングするためのシナリオ分析を行う。
3つの主要株主グループに対する脅威もマップ化しています。
論文 参考訳(メタデータ) (2024-03-20T05:17:22Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。