論文の概要: From Entity Reliability to Clean Feedback: An Entity-Aware Denoising Framework Beyond Interaction-Level Signals
- arxiv url: http://arxiv.org/abs/2508.10851v2
- Date: Fri, 10 Oct 2025 13:14:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 04:53:46.842415
- Title: From Entity Reliability to Clean Feedback: An Entity-Aware Denoising Framework Beyond Interaction-Level Signals
- Title(参考訳): エンティティの信頼性からクリーンなフィードバックへ - インタラクションレベルシグナルを超えたエンティティを意識したデノイングフレームワーク
- Authors: Ze Liu, Xianquan Wang, Shuochen Liu, Jie Ma, Huibo Xu, Yupeng Han, Kai Zhang, Jun Zhou,
- Abstract要約: 暗黙のフィードバックはレコメンデーションシステムの中心であるが、本質的にノイズがあり、しばしばモデルのトレーニングやユーザエクスペリエンスの劣化を損なう。
textbfEARD(textbfEntity-textbfAware textbfReliability-textbfDriven Denoising)は,インタラクションレベルの信号からエンティティレベルの信頼性に移行する軽量フレームワークである。
- 参考スコア(独自算出の注目度): 20.323837731778358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit feedback is central to modern recommender systems but is inherently noisy, often impairing model training and degrading user experience. At scale, such noise can mislead learning processes, reducing both recommendation accuracy and platform value. Existing denoising strategies typically overlook the entity-specific nature of noise while introducing high computational costs and complex hyperparameter tuning. To address these challenges, we propose \textbf{EARD} (\textbf{E}ntity-\textbf{A}ware \textbf{R}eliability-\textbf{D}riven Denoising), a lightweight framework that shifts the focus from interaction-level signals to entity-level reliability. Motivated by the empirical observation that training loss correlates with noise, EARD quantifies user and item reliability via their average training losses as a proxy for reputation, and integrates these entity-level factors with interaction-level confidence. The framework is \textbf{model-agnostic}, \textbf{computationally efficient}, and requires \textbf{only two intuitive hyperparameters}. Extensive experiments across multiple datasets and backbone models demonstrate that EARD yields substantial improvements over state-of-the-art baselines (e.g., up to 27.01\% gain in NDCG@50), while incurring negligible additional computational cost. Comprehensive ablation studies and mechanism analyses further confirm EARD's robustness to hyperparameter choices and its practical scalability. These results highlight the importance of entity-aware reliability modeling for denoising implicit feedback and pave the way for more robust recommendation research.
- Abstract(参考訳): 暗黙のフィードバックは現代のレコメンデータシステムの中心であるが、本質的にノイズが多く、しばしばモデルのトレーニングやユーザエクスペリエンスの劣化を損なう。
大規模な場合、そのようなノイズは学習プロセスを誤解させ、推奨精度とプラットフォーム価値の両方を低下させる。
既存の denoising 戦略は、通常、高計算コストと複雑なハイパーパラメータチューニングを導入しながら、ノイズの実体固有の性質を見落としている。
これらの課題に対処するため、相互作用レベルの信号からエンティティレベルの信頼性に焦点を移す軽量なフレームワークである \textbf{EARD} (\textbf{E}ntity-\textbf{A}ware \textbf{R}eliability-\textbf{D}riven Denoising) を提案する。
EARDは、トレーニング損失がノイズと相関する経験的観察によって、評価のプロキシとして平均的なトレーニング損失を通じてユーザとアイテムの信頼性を定量化し、これらのエンティティレベルの要因を相互作用レベルの信頼性と統合する。
フレームワークは \textbf{model-agnostic}、 \textbf{computationally efficient} であり、 \textbf{only two intuitive hyperparameters} を必要とする。
複数のデータセットとバックボーンモデルにわたる大規模な実験により、EARDは最先端のベースライン(例えば、NDCG@50で最大27.01\%のゲイン)よりも大幅に改善され、さらに計算コストが増大することを示した。
包括的アブレーション研究と機構解析により、EARDのハイパーパラメータ選択に対する堅牢性とその実用的スケーラビリティがさらに裏付けられる。
これらの結果は、暗黙のフィードバックを認知し、より堅牢なレコメンデーション研究の道を開くためのエンティティ・アウェア・信頼性・モデリングの重要性を強調している。
関連論文リスト
- Machine Unlearning for Robust DNNs: Attribution-Guided Partitioning and Neuron Pruning in Noisy Environments [5.8166742412657895]
ディープニューラルネットワーク(DNN)は、さまざまなドメインで顕著な成功を収めているが、ノイズやトレーニングデータによってそのパフォーマンスが著しく低下する可能性がある。
本稿では,帰属誘導型データパーティショニング,識別的ニューロンプルーニング,およびノイズのあるサンプルの影響を軽減するための微調整を目的とした新しいフレームワークを提案する。
CIFAR-10の標準リトレーニングよりも約10%の絶対精度向上を実現し,ラベルノイズを注入した。
論文 参考訳(メタデータ) (2025-06-13T09:37:11Z) - Noise Augmented Fine Tuning for Mitigating Hallucinations in Large Language Models [1.0579965347526206]
大規模言語モデル(LLM)は、しばしば不正確な、または誤解を招くコンテンツ・ハロシンを生成する。
noise-Augmented Fine-Tuning (NoiseFiT) は適応ノイズ注入を利用してモデルロバスト性を高める新しいフレームワークである。
NoiseFiTは、動的にスケールしたガウス雑音を用いて、高SNR(より堅牢)または低SNR(潜在的に過正規化)と同定された層を選択的に摂動する。
論文 参考訳(メタデータ) (2025-04-04T09:27:19Z) - Personalized Denoising Implicit Feedback for Robust Recommender System [60.719158008403376]
ユーザの個人的損失分布には,正常なインタラクションとノイズの多いインタラクションが明確に区別されていることを示す。
本稿では,ユーザのパーソナライズロス分布であるPLDを用いてDenoiseに対する再サンプリング戦略を提案する。
論文 参考訳(メタデータ) (2025-02-01T07:13:06Z) - Impact of Noisy Supervision in Foundation Model Learning [91.56591923244943]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - FedA3I: Annotation Quality-Aware Aggregation for Federated Medical Image
Segmentation against Heterogeneous Annotation Noise [10.417576145123256]
フェデレートラーニング(FL)は、分散医療データに基づいてセグメンテーションモデルをトレーニングするための有望なパラダイムとして登場した。
本稿では,この問題を初めて特定し,対処する。
2つの実世界の医療画像セグメンテーションデータセットの実験は、最先端のアプローチに対するFedA$3$Iの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-12-20T08:42:57Z) - Negative Pre-aware for Noisy Cross-modal Matching [46.5591267410225]
雑音対応は認識と修正が難しいため,クロスモーダルノイズロバスト学習は難しい課題である。
本稿では,雑音の多い下流タスクに対する大規模視覚言語モデルファインタニングのための,否定的事前認識型クロスモーダルマッチングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:52:36Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
低光画像強調(LLIE)技術は、画像の詳細の保存とコントラストの強化に顕著な進歩をもたらした。
これらのアプローチは、動的ノイズを効率的に緩和し、様々な低照度シナリオを収容する上で、永続的な課題に直面する。
まず,低照度画像の雑音レベルを迅速かつ高精度に推定する方法を提案する。
次に、照明と入力の一般的な制約を満たすために、Learningable Illumination Interpolator (LII) を考案する。
論文 参考訳(メタデータ) (2023-05-17T13:56:48Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
既存のモデルはクリーンデータに基づいてトレーニングされ、クリーンデータトレーニングと現実世界の推論の間にtextitgapが発生する。
本稿では,良質なサンプルと低品質のサンプルの両方が類似ベクトル空間に埋め込まれた領域適応法を提案する。
広く使用されているデータセット、スニップス、および大規模な社内データセット(1000万のトレーニング例)に関する実験では、この方法は実世界の(騒々しい)コーパスのベースラインモデルを上回るだけでなく、堅牢性、すなわち、騒々しい環境下で高品質の結果を生み出すことを実証しています。
論文 参考訳(メタデータ) (2021-04-13T17:54:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。