論文の概要: Approaching the Source of Symbol Grounding with Confluent Reductions of Abstract Meaning Representation Directed Graphs
- arxiv url: http://arxiv.org/abs/2508.11068v1
- Date: Thu, 14 Aug 2025 20:53:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-18 14:51:23.671818
- Title: Approaching the Source of Symbol Grounding with Confluent Reductions of Abstract Meaning Representation Directed Graphs
- Title(参考訳): 抽象的意味表現指向グラフの収束化による記号接地源へのアプローチ
- Authors: Nicolas Goulet, Alexandre Blondin Massé, Moussa Abdendi,
- Abstract要約: 実際のデジタル辞書をAMR有向グラフに埋め込む方法について述べる。
そして、回路空間を保存する変換を用いて、これらのグラフを収束的に減少させる。
これらの還元ダイグラフの特性を解析し,シンボル接地問題に関して考察した。
- 参考スコア(独自算出の注目度): 45.470816133099724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Abstract meaning representation (AMR) is a semantic formalism used to represent the meaning of sentences as directed acyclic graphs. In this paper, we describe how real digital dictionaries can be embedded into AMR directed graphs (digraphs), using state-of-the-art pre-trained large language models. Then, we reduce those graphs in a confluent manner, i.e. with transformations that preserve their circuit space. Finally, the properties of these reduces digraphs are analyzed and discussed in relation to the symbol grounding problem.
- Abstract(参考訳): 抽象的意味表現(英:Abstract meaning representation, AMR)は、文の意味を非巡回グラフとして表す意味形式である。
本稿では,AMR指向グラフ(グラフ)にデジタル辞書を組み込む方法について述べる。
すると、これらのグラフは収束的に減少し、すなわち、回路空間を保存する変換を持つ。
最後に、これらの還元ダイグラフの特性を解析し、シンボル接地問題に関して議論する。
関連論文リスト
- Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data [49.77103348208835]
グラフの有限集合がラプラシアンの重み付き和を通してデータ分布の関係を特徴付けるグラフ辞書信号モデルを定義する。
本稿では,観測データからグラフ辞書表現を推論するフレームワークを提案する。
我々は,脳活動データに基づく運動画像復号作業におけるグラフ辞書表現を利用して,従来の手法よりも想像的な動きをよりよく分類する。
論文 参考訳(メタデータ) (2024-11-08T17:40:43Z) - Transitivity Recovering Decompositions: Interpretable and Robust
Fine-Grained Relationships [69.04014445666142]
Transitivity Recovering Decompositions (TRD) は、抽象的な創発的関係の解釈可能な等価性を識別するグラフ空間探索アルゴリズムである。
TRDは明らかにノイズの多い見方に対して堅牢であり、実証的な証拠もこの発見を支持している。
論文 参考訳(メタデータ) (2023-10-24T16:48:56Z) - Graph-level Representation Learning with Joint-Embedding Predictive Architectures [43.89120279424267]
JEPA(Joint-Embedding Predictive Architectures)は、自己指導型表現学習の斬新で強力な技術である。
グラフ結合埋め込み予測アーキテクチャ(Graph-JEPA)を提案することにより、このパラダイムを用いてグラフレベルの表現を効果的にモデル化できることを示す。
特に、マスク付きモデリングを採用し、コンテキストサブグラフの潜時表現から始まるマスク付きサブグラフの潜時表現を予測することに焦点をあてる。
論文 参考訳(メタデータ) (2023-09-27T20:42:02Z) - Incorporating Graph Information in Transformer-based AMR Parsing [34.461828101932184]
LeakDistillはTransformerアーキテクチャの変更を探求するモデルとメソッドである。
トレーニング時に,単語とノードのアライメントを用いてグラフ構造情報をエンコーダに埋め込むことで,最先端のAMR解析が得られることを示す。
論文 参考訳(メタデータ) (2023-06-23T12:12:08Z) - Visual Semantic Parsing: From Images to Abstract Meaning Representation [20.60579156219413]
自然言語処理の分野で広く使われている意味表現である抽象的意味表現(AMR)を活用することを提案する。
我々の視覚的AMRグラフは、視覚入力から外挿された高レベルな意味概念に焦点をあてて、言語的により理解されている。
本研究は,シーン理解の改善に向けた今後の重要な研究方向を示唆するものである。
論文 参考訳(メタデータ) (2022-10-26T17:06:42Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
本稿では,元のグラフを表す小さなグラフの作成に焦点をあてる。
我々は、元のグラフを受容体の分布とみなし、受容体が同様の分布を持つ小さなグラフを合成することを目的としている。
論文 参考訳(メタデータ) (2022-06-28T02:10:05Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - A Differentiable Relaxation of Graph Segmentation and Alignment for AMR
Parsing [75.36126971685034]
我々は、アライメントとセグメンテーションをモデルの潜在変数として扱い、エンドツーエンドのトレーニングの一部としてそれらを誘導する。
また,AMRの個々の構造を扱うために手作りされたLyu2018AMRPAのセグメンテーションルールに依存するモデルにもアプローチした。
論文 参考訳(メタデータ) (2020-10-23T21:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。