論文の概要: Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data
- arxiv url: http://arxiv.org/abs/2411.05729v1
- Date: Fri, 08 Nov 2024 17:40:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:37.852103
- Title: Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data
- Title(参考訳): 多変量データのスパース表現のためのグラフ辞書信号モデル
- Authors: William Cappelletti, Pascal Frossard,
- Abstract要約: グラフの有限集合がラプラシアンの重み付き和を通してデータ分布の関係を特徴付けるグラフ辞書信号モデルを定義する。
本稿では,観測データからグラフ辞書表現を推論するフレームワークを提案する。
我々は,脳活動データに基づく運動画像復号作業におけるグラフ辞書表現を利用して,従来の手法よりも想像的な動きをよりよく分類する。
- 参考スコア(独自算出の注目度): 49.77103348208835
- License:
- Abstract: Representing and exploiting multivariate signals require capturing complex relations between variables. We define a novel Graph-Dictionary signal model, where a finite set of graphs characterizes relationships in data distribution through a weighted sum of their Laplacians. We propose a framework to infer the graph dictionary representation from observed data, along with a bilinear generalization of the primal-dual splitting algorithm to solve the learning problem. Our new formulation allows to include a priori knowledge on signal properties, as well as on underlying graphs and their coefficients. We show the capability of our method to reconstruct graphs from signals in multiple synthetic settings, where our model outperforms previous baselines. Then, we exploit graph-dictionary representations in a motor imagery decoding task on brain activity data, where we classify imagined motion better than standard methods relying on many more features.
- Abstract(参考訳): 多変量信号の表現と利用には、変数間の複雑な関係を捉える必要がある。
グラフの有限集合がラプラシアンの重み付き和を通してデータ分布の関係を特徴付けるグラフ辞書信号モデルを定義する。
本稿では,観測データからグラフ辞書表現を推論するフレームワークを提案する。
我々の新しい定式化は、信号の性質や基礎となるグラフとその係数に関する事前知識を含めることができる。
提案手法は,複数の合成条件下で信号からグラフを再構成し,モデルが従来のベースラインより優れていたことを示す。
そこで我々は,脳活動データに基づく運動画像復号作業におけるグラフ辞書表現を利用して,多くの特徴に頼っている標準的な方法よりも,想像的な動きをよりよく分類する。
関連論文リスト
- Polynomial Graphical Lasso: Learning Edges from Gaussian Graph-Stationary Signals [18.45931641798935]
本稿では,Nudal信号からグラフ構造を学習する新しい手法であるPolynomial Graphical Lasso (PGL)を紹介する。
我々の重要な貢献は、グラフ上のガウス的および定常的な信号であり、グラフ学習ラッソの開発を可能にすることである。
論文 参考訳(メタデータ) (2024-04-03T10:19:53Z) - Creating generalizable downstream graph models with random projections [22.690120515637854]
本稿では,グラフ全体にわたってモデルを一般化するグラフ表現学習手法について検討する。
遷移行列の複数のパワーを推定するためにランダムな射影を用いることで、同型不変な特徴の集合を構築することができることを示す。
結果として得られる特徴は、ノードの局所的近傍に関する十分な情報を回復するために使用することができ、他のアプローチと競合する推論を可能にする。
論文 参考訳(メタデータ) (2023-02-17T14:27:00Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Joint Inference of Multiple Graphs from Matrix Polynomials [34.98220454543502]
ノード上の観測からグラフ構造を推定することは重要かつ一般的なネットワーク科学課題である。
ノードの信号の観測から複数のグラフを共同で推定する問題について検討する。
本稿では,真のグラフの回復を保証するための凸最適化手法を提案する。
論文 参考訳(メタデータ) (2020-10-16T02:45:15Z) - Kernel-based Graph Learning from Smooth Signals: A Functional Viewpoint [15.577175610442351]
ノード側および観測側情報を組み込んだ新しいグラフ学習フレームワークを提案する。
我々は、Kronecker製品カーネルに付随する再生カーネルヒルベルト空間の関数としてグラフ信号を使用する。
我々は、Kronecker製品カーネルと組み合わせることで、グラフによって説明される依存性とグラフ信号による依存性の両方を捕捉できる新しいグラフベースの正規化手法を開発した。
論文 参考訳(メタデータ) (2020-08-23T16:04:23Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Wasserstein-based Graph Alignment [56.84964475441094]
我々は,より小さいグラフのノードと大きなグラフのノードをマッチングすることを目的とした,1対多のグラフアライメント問題に対する新しい定式化を行った。
提案手法は,各タスクに対する最先端のアルゴリズムに対して,大幅な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-03-12T22:31:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。