論文の概要: Novel Parasitic Dual-Scale Modeling for Efficient and Accurate Multilingual Speech Translation
- arxiv url: http://arxiv.org/abs/2508.11189v1
- Date: Fri, 15 Aug 2025 03:46:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-18 14:51:23.730937
- Title: Novel Parasitic Dual-Scale Modeling for Efficient and Accurate Multilingual Speech Translation
- Title(参考訳): 効率・高精度な多言語音声翻訳のための新しいパラサイトデュアルスケールモデリング
- Authors: Chenyang Le, Yinfeng Xia, Huiyan Li, Manhong Wang, Yutao Sun, Xingyang Ma, Yanmin Qian,
- Abstract要約: 本稿では,改良された投機的サンプリング手法とモデル圧縮と知識蒸留技術を組み合わせた,革新的なパラサイトデュアルスケールアプローチを提案する。
我々はWhisper Mediumモデル上に構築し、新しいKVSPNモジュールを統合し、推論効率を改善した6つのポピュラー言語で最先端(SOTA)性能を実現する。
- 参考スコア(独自算出の注目度): 33.87915567709033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in speech-to-text translation have led to the development of multilingual models capable of handling multiple language pairs simultaneously. However, these unified models often suffer from large parameter sizes, making it challenging to balance inference efficiency and performance, particularly in local deployment scenarios. We propose an innovative Parasitic Dual-Scale Approach, which combines an enhanced speculative sampling method with model compression and knowledge distillation techniques. Building on the Whisper Medium model, we enhance it for multilingual speech translation into whisperM2M, and integrate our novel KVSPN module, achieving state-of-the-art (SOTA) performance across six popular languages with improved inference efficiency. KVSPN enables a 40\% speedup with no BLEU score degradation. Combined with distillation methods, it represents a 2.6$\times$ speedup over the original Whisper Medium with superior performance.
- Abstract(参考訳): 近年,複数の言語ペアを同時に扱える多言語モデルの開発が進んでいる。
しかしながら、これらの統一モデルは、しばしば大きなパラメータサイズに悩まされるため、特にローカルなデプロイメントシナリオにおいて、推論効率とパフォーマンスのバランスをとることは困難である。
本稿では,改良された投機的サンプリング手法とモデル圧縮と知識蒸留技術を組み合わせた,革新的なパラサイトデュアルスケールアプローチを提案する。
Whisper Mediumモデルに基づいて、多言語音声をwhisperM2Mに変換し、新しいKVSPNモジュールを統合し、推論効率を向上した6言語で最先端(SOTA)性能を実現する。
KVSPNはBLEUスコア劣化のない40%のスピードアップを可能にする。
蒸留法と組み合わせると、元のウィスパー・ミディアムよりも2.6$\times$のスピードアップであり、性能が優れている。
関連論文リスト
- Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation [70.22782550540714]
QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールルアーニング法
本稿では、QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールLeArning手法を提案する。
論文 参考訳(メタデータ) (2024-08-07T12:42:09Z) - Efficient Compression of Multitask Multilingual Speech Models [0.0]
DistilWhisperは、マルチタスクとマルチ言語機能の利点を維持しながら、これらの言語におけるASRのパフォーマンスギャップを埋めることができる。
提案手法は, 言語専門家を用いた軽量モジュール型ASR微調整と, ささやかな大口径v2からの知識蒸留の2つの戦略を含む。
論文 参考訳(メタデータ) (2024-05-02T03:11:59Z) - On the Analysis of Cross-Lingual Prompt Tuning for Decoder-based
Multilingual Model [49.81429697921861]
多言語自己回帰モデルにおけるパラメータ効率細調整(PEFT)と言語間タスクの相互作用について検討する。
高速チューニングは、微調整よりも低リソース言語の性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-14T00:43:33Z) - Multilingual DistilWhisper: Efficient Distillation of Multi-task Speech
Models via Language-Specific Experts [14.999359332108767]
表現不足言語に対するASRの性能ギャップを埋めるため、DistilWhisperを提案する。
提案手法は, 言語専門家を用いた軽量モジュール型ASR微調整と, ささやかな大口径v2からの知識蒸留の2つの戦略を含む。
その結果,本手法は通常のファインチューニングやLoRAアダプタよりも効果的であることがわかった。
論文 参考訳(メタデータ) (2023-11-02T08:37:30Z) - Exploiting Multilingualism in Low-resource Neural Machine Translation
via Adversarial Learning [3.2258463207097017]
Generative Adversarial Networks (GAN) はニューラルマシン翻訳(NMT)に有望なアプローチを提供する
GANでは、バイリンガルモデルと同様に、マルチリンガルNTTはモデルトレーニング中に各文の参照翻訳を1つだけ考慮している。
本稿では,DAASI(Denoising Adversarial Auto-Encoder-based Sentence Interpolation)アプローチによる文計算を提案する。
論文 参考訳(メタデータ) (2023-03-31T12:34:14Z) - Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis [84.12658971655253]
本稿では,マルチモーダルタスクのためのBERTベースのアーキテクチャであるAdapted Multimodal BERTを提案する。
アダプタはタスクの事前訓練された言語モデルを手動で調整し、融合層はタスク固有の層ワイドな音声視覚情報とテキストBERT表現を融合させる。
われわれは、このアプローチがより効率的なモデルにつながり、微調整されたモデルよりも優れ、ノイズの入力に堅牢であることを示した。
論文 参考訳(メタデータ) (2022-12-01T17:31:42Z) - DiffusionBERT: Improving Generative Masked Language Models with
Diffusion Models [81.84866217721361]
DiffusionBERTは離散拡散モデルに基づく新しい生成マスク付き言語モデルである。
本稿では,各ステップに付加される雑音の度合いを制御する前方拡散プロセスのための新しいノイズスケジュールを提案する。
非条件テキスト生成の実験では、DiffusionBERTは既存のテキスト拡散モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-11-28T03:25:49Z) - Multilingual Speech Translation with Efficient Finetuning of Pretrained
Models [82.22294901727933]
最小限のLNA(LayerNorm and Attention)ファインタニングは、ゼロショットのクロスリンガルおよびクロスモーダリティ転送能力を実現することができる。
本手法は多言語多言語モデルにおいて強いゼロショット性能を示す。
論文 参考訳(メタデータ) (2020-10-24T08:15:08Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
ニューラルネットワーク翻訳(NMT)の多言語モデルは理論的には魅力的であるが、しばしばバイリンガルモデルに劣る。
我々は,多言語NMTが言語ペアをサポートするためにより強力なモデリング能力を必要とすることを論じる。
未知のトレーニング言語ペアの翻訳を強制するために,ランダムなオンライン翻訳を提案する。
論文 参考訳(メタデータ) (2020-04-24T17:21:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。