論文の概要: Enhancing Interactive Voting-Based Map Matching: Improving Efficiency and Robustness for Heterogeneous GPS Trajectories
- arxiv url: http://arxiv.org/abs/2508.11235v1
- Date: Fri, 15 Aug 2025 05:51:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-18 14:51:23.755851
- Title: Enhancing Interactive Voting-Based Map Matching: Improving Efficiency and Robustness for Heterogeneous GPS Trajectories
- Title(参考訳): 対話型投票に基づく地図マッチングの強化:不均一なGPS軌道の効率性とロバスト性の向上
- Authors: William Alemanni, Arianna Burzacchi, Davide Colombi, Elena Giarratano,
- Abstract要約: 本稿では,対話投票に基づくマップマッチングアルゴリズムの拡張版を提案する。
主な目的は、入力データの品質によらず、高精度でGPS軌道を再構築することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an enhanced version of the Interactive Voting-Based Map Matching algorithm, designed to efficiently process trajectories with varying sampling rates. The main aim is to reconstruct GPS trajectories with high accuracy, independent of input data quality. Building upon the original algorithm, developed exclusively for aligning GPS signals to road networks, we extend its capabilities by integrating trajectory imputation. Our improvements also include the implementation of a distance-bounded interactive voting strategy to reduce computational complexity, as well as modifications to address missing data in the road network. Furthermore, we incorporate a custom-built asset derived from OpenStreetMap, enabling this approach to be smoothly applied in any geographic region covered by OpenStreetMap's road network. These advancements preserve the core strengths of the original algorithm while significantly extending its applicability to diverse real-world scenarios.
- Abstract(参考訳): 本稿では,様々なサンプリングレートでトラジェクトリを効率的に処理するインタラクティブ投票ベースのマップマッチングアルゴリズムの強化版を提案する。
主な目的は、入力データの品質によらず、高精度でGPS軌道を再構築することである。
道路網へのGPS信号の整合性に特化して開発された元来のアルゴリズムをベースとして,トラジェクティブ・インパクションを統合してその能力を拡張した。
我々の改善には、計算複雑性を低減するための距離制限付き対話型投票戦略の実装や、道路ネットワークにおける欠落データに対処するための修正も含まれている。
さらに、OpenStreetMapから派生したカスタムビルドアセットを組み込むことにより、OpenStreetMapのロードネットワークがカバーする任意の地理的領域において、このアプローチをスムーズに適用することができる。
これらの進歩は、元のアルゴリズムの中核的な強みを保ちながら、その適用性を様々な現実世界のシナリオに著しく拡張している。
関連論文リスト
- Bayesian-Driven Graph Reasoning for Active Radio Map Construction [70.25485502430104]
本稿では,経路ナビゲーションに適したグラフベースの推論を明示的に活用する不確実性を考慮した無線地図再構成フレームワークを提案する。
提案手法は,(1)空間的不確実性をリアルタイムで推定するベイズニューラルネットワーク,(2)グローバル推論を行う注意に基づく強化学習ポリシの2つの重要な深層学習要素を統合した。
実験の結果,URAMは既存のベースラインよりも最大で34%の精度で復元できることがわかった。
論文 参考訳(メタデータ) (2025-07-29T03:32:01Z) - Accelerating Vehicle Routing via AI-Initialized Genetic Algorithms [55.78505925402658]
車両ルーティング問題(VRP)は、トラベリングセールスパーソン問題の延長であり、進化的最適化における基本的なNPハードチャレンジである。
遺伝的アルゴリズムによってさらに最適化された初期解を迅速に生成するために、強化学習エージェント(事前インスタンスで訓練された)を使用した新しい最適化フレームワークを導入する。
例えば、EARLIは1秒以内に500カ所の車両ルーティングを処理し、同じソリューション品質の現在のソルバよりも10倍高速で、リアルタイムやインタラクティブなルーティングのようなアプリケーションを可能にする。
論文 参考訳(メタデータ) (2025-04-08T15:21:01Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - Local All-Pair Correspondence for Point Tracking [59.76186266230608]
ビデオシーケンス間の任意の点(TAP)を追跡するタスクのために設計された,高精度かつ効率的なモデルであるLocoTrackを紹介する。
LocoTrackは、すべてのTAP-Vidベンチマークで未整合の精度を実現し、現在の最先端の約6倍の速度で動作している。
論文 参考訳(メタデータ) (2024-07-22T06:49:56Z) - NLP-enabled Trajectory Map-matching in Urban Road Networks using a Transformer-based Encoder-decoder [1.3812010983144802]
本研究では,NLPにインスパイアされた機械翻訳としてタスクを定式化する,データ駆動型深層学習型マップマッチングフレームワークを提案する。
変圧器を用いたエンコーダ・デコーダモデルでは,ノイズの多いGPS点の文脈表現を学習し,軌道の挙動や道路構造をエンドツーエンドに推定する。
合成軌道実験により、この手法は文脈認識を統合することによって従来の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-04-18T18:39:23Z) - Clustering Dynamics for Improved Speed Prediction Deriving from
Topographical GPS Registrations [0.0]
スパースGPSデータポイントとそれに関連する地形・道路設計特徴を用いた速度予測手法を提案する。
私たちのゴールは、地形とインフラの類似性を利用して、交通データがない地域での速度を予測する機械学習モデルをトレーニングできるかどうかを調べることです。
論文 参考訳(メタデータ) (2024-02-12T09:28:16Z) - GANav: Group-wise Attention Network for Classifying Navigable Regions in
Unstructured Outdoor Environments [54.21959527308051]
本稿では,RGB画像から,オフロード地形および非構造環境における安全かつ航行可能な領域を識別する新しい学習手法を提案する。
本手法は,粒度の粗いセマンティックセグメンテーションを用いて,そのナビビリティレベルに基づいて地形分類群を分類する。
RUGD と RELLIS-3D のデータセットを広範囲に評価することにより,我々の学習アルゴリズムがナビゲーションのためのオフロード地形における視覚知覚の精度を向上させることを示す。
論文 参考訳(メタデータ) (2021-03-07T02:16:24Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。