論文の概要: Domain-aware Category-level Geometry Learning Segmentation for 3D Point Clouds
- arxiv url: http://arxiv.org/abs/2508.11265v1
- Date: Fri, 15 Aug 2025 07:02:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-18 14:51:23.77498
- Title: Domain-aware Category-level Geometry Learning Segmentation for 3D Point Clouds
- Title(参考訳): 3次元点雲に対する領域対応カテゴリーレベルの幾何学習セグメンテーション
- Authors: Pei He, Lingling Li, Licheng Jiao, Ronghua Shang, Fang Liu, Shuang Wang, Xu Liu, Wenping Ma,
- Abstract要約: 点雲の特徴の微細な幾何学的性質を知覚するために, カテゴリーレベルの幾何埋め込み (CGE) を提案する。
Geometric Consistent Learning (GCL) は, 潜伏した3次元分布をシミュレートし, カテゴリレベルの幾何学的埋め込みを整列するために提案される。
- 参考スコア(独自算出の注目度): 38.70636648272246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization in 3D segmentation is a critical challenge in deploying models to unseen environments. Current methods mitigate the domain shift by augmenting the data distribution of point clouds. However, the model learns global geometric patterns in point clouds while ignoring the category-level distribution and alignment. In this paper, a category-level geometry learning framework is proposed to explore the domain-invariant geometric features for domain generalized 3D semantic segmentation. Specifically, Category-level Geometry Embedding (CGE) is proposed to perceive the fine-grained geometric properties of point cloud features, which constructs the geometric properties of each class and couples geometric embedding to semantic learning. Secondly, Geometric Consistent Learning (GCL) is proposed to simulate the latent 3D distribution and align the category-level geometric embeddings, allowing the model to focus on the geometric invariant information to improve generalization. Experimental results verify the effectiveness of the proposed method, which has very competitive segmentation accuracy compared with the state-of-the-art domain generalized point cloud methods.
- Abstract(参考訳): 3Dセグメンテーションにおけるドメインの一般化は、目に見えない環境にモデルをデプロイする上で重要な課題である。
現在の方法は、ポイントクラウドのデータ分散を増大させることで、ドメインシフトを緩和する。
しかし、このモデルは、カテゴリーレベルの分布とアライメントを無視しながら、点雲のグローバルな幾何学的パターンを学習する。
本稿では,領域一般化3次元セマンティックセグメンテーションのための領域不変な幾何学的特徴を探索するために,カテゴリレベルの幾何学的学習フレームワークを提案する。
具体的には、各クラスの幾何学的性質を構成する点雲の特徴の微細な幾何学的性質を知覚し、意味学習に幾何学的埋め込みを組み込むカテゴリレベルの幾何学埋め込み(CGE)を提案する。
次に,幾何学的一貫性学習(Geometric Consistent Learning, GCL)を提案し, 潜伏した3次元分布をシミュレートし, カテゴリーレベルの幾何学的埋め込みを整列させ, 幾何学的不変情報に集中させて一般化を改善する。
提案手法の有効性を,最先端の領域一般化点クラウド法と比較し,非常に競争力のあるセグメンテーション精度で検証した。
関連論文リスト
- Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - Generalized Few-Shot Point Cloud Segmentation Via Geometric Words [54.32239996417363]
ショットポイントクラウドセグメンテーションアルゴリズムは、ベースクラスのセグメンテーション精度を犠牲にして、新しいクラスに適応するように学習する。
一般化された数ショット点雲のセグメンテーションというより実践的なパラダイムの最初の試みを示す。
基本クラスと新規クラス間で共有される幾何学的要素を表す幾何学的単語を提案し,それらを新しい幾何学的意味表現に組み込む。
論文 参考訳(メタデータ) (2023-09-20T11:24:33Z) - Deep Semantic Graph Matching for Large-scale Outdoor Point Clouds
Registration [22.308070598885532]
我々は、ポイントクラウド登録問題をセマンティックインスタンスマッチングと登録タスクとして扱う。
大規模屋外クラウド登録のためのディープセマンティックグラフマッチング法(DeepSGM)を提案する。
KITTIオドメトリデータセットで行った実験結果から,提案手法が登録性能を向上させることが示された。
論文 参考訳(メタデータ) (2023-08-10T03:07:28Z) - Zero-shot point cloud segmentation by transferring geometric primitives [68.18710039217336]
ゼロショットポイントクラウドセマンティックセマンティックセマンティックセマンティクスについて検討し、そこではネットワークが見えないオブジェクトに対してトレーニングされ、見えないオブジェクトをセマンティクスできる。
本研究では,視覚的および視覚的カテゴリーのオブジェクトで共有される幾何学的プリミティブを学習し,言語と学習された幾何学的プリミティブとの微粒なアライメントを利用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-18T15:06:54Z) - Curved Geometric Networks for Visual Anomaly Recognition [39.91252195360767]
データ分布の根底にある性質を理解するために潜伏埋め込みを学ぶことは、曲率ゼロのユークリッド空間でしばしば定式化される。
本研究では,データ中の異常やアウト・オブ・ディストリビューション・オブジェクトを解析するための曲線空間の利点について検討する。
論文 参考訳(メタデータ) (2022-08-02T01:15:39Z) - Fitting and recognition of geometric primitives in segmented 3D point
clouds using a localized voting procedure [1.8352113484137629]
投票手順によって各タイプの原始パラメータを初期推定できる点雲処理手法を提案する。
これらの推定値を用いることで、最適解の探索を次元的に還元された空間に局所化し、HT を文献で一般的に見られるものよりもより原始的に拡張することが効率的となる。
論文 参考訳(メタデータ) (2022-05-30T20:47:43Z) - SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation [94.11915008006483]
ポイントクラウドセマンティックセグメンテーションのためのSemAffiNetを提案する。
我々はScanNetV2とNYUv2データセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-05-26T17:00:23Z) - Geometry-Aware Self-Training for Unsupervised Domain Adaptationon Object
Point Clouds [36.49322708074682]
本稿では,オブジェクトポイントクラウド分類の教師なし領域適応のためのジオメトリ・アウェア・セルフトレーニング(GAST)を提案する。
具体的には,2つの自己監督型幾何学的学習タスクを特徴正規化として,意味カテゴリーのドメイン共有表現を学習することを目的とする。
一方、データセット間の多様な点分布は、新しい曲率認識歪みの局所化によって正規化することができる。
論文 参考訳(メタデータ) (2021-08-20T13:29:11Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
3次元画像処理のためのGDANet(Geometry-Disentangled Attention Network)を提案する。
GDANetは、点雲を3Dオブジェクトの輪郭と平らな部分に切り離し、それぞれ鋭い変化成分と穏やかな変化成分で表される。
3Dオブジェクトの分類とセグメンテーションベンチマークの実験は、GDANetがより少ないパラメータで最先端の処理を実現していることを示している。
論文 参考訳(メタデータ) (2020-12-20T13:35:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。