論文の概要: Collaborative Learning-Enhanced Lightweight Models for Predicting Arterial Blood Pressure Waveform in a Large-scale Perioperative Dataset
- arxiv url: http://arxiv.org/abs/2508.11669v1
- Date: Thu, 07 Aug 2025 02:40:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-24 10:27:26.491937
- Title: Collaborative Learning-Enhanced Lightweight Models for Predicting Arterial Blood Pressure Waveform in a Large-scale Perioperative Dataset
- Title(参考訳): 大規模周術期データセットにおける動脈圧波形予測のための協調学習強化軽量モデル
- Authors: Wentao Li, Yonghu He, Kun Gao, Qing Liu, Yali Zheng,
- Abstract要約: 本研究では、軽量なsInvResUNetと、KDCL_sInvResUNetという協調学習スキームを紹介する。
実時間ABP推定は、わずか8.49ミリ秒の推論時間で組込みデバイス上で達成された。
これらの有望な結果にもかかわらず、すべての深層学習モデルは、異なる人口動態と心臓血管状態に有意な変化を示した。
- 参考スコア(独自算出の注目度): 8.11687374025924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Noninvasive arterial blood pressure (ABP) monitoring is essential for patient management in critical care and perioperative settings, providing continuous assessment of cardiovascular hemodynamics with minimal risks. Numerous deep learning models have developed to reconstruct ABP waveform from noninvasively acquired physiological signals such as electrocardiogram and photoplethysmogram. However, limited research has addressed the issue of model performance and computational load for deployment on embedded systems. The study introduces a lightweight sInvResUNet, along with a collaborative learning scheme named KDCL_sInvResUNet. With only 0.89 million parameters and a computational load of 0.02 GFLOPS, real-time ABP estimation was successfully achieved on embedded devices with an inference time of just 8.49 milliseconds for a 10-second output. We performed subject-independent validation in a large-scale and heterogeneous perioperative dataset containing 1,257,141 data segments from 2,154 patients, with a wide BP range (41-257 mmHg for SBP, and 31-234 mmHg for DBP). The proposed KDCL_sInvResUNet achieved lightly better performance compared to large models, with a mean absolute error of 10.06 mmHg and mean Pearson correlation of 0.88 in tracking ABP changes. Despite these promising results, all deep learning models showed significant performance variations across different demographic and cardiovascular conditions, highlighting their limited ability to generalize across such a broad and diverse population. This study lays a foundation work for real-time, unobtrusive ABP monitoring in real-world perioperative settings, providing baseline for future advancements in this area.
- Abstract(参考訳): 非侵襲的動脈血圧モニタリング(ABP)は、重症度と周術期における患者管理に必須であり、最小限のリスクで循環動態を連続的に評価する。
心電図や光胸腺図などの非侵襲的な生理学的信号からABP波形を再構成する深層学習モデルが多数開発されている。
しかし, 組込みシステムへの展開において, モデル性能と計算負荷の問題に対処する研究は限られている。
この研究では、軽量なsInvResUNetと、KDCL_sInvResUNetという協調学習スキームを紹介した。
0.89万のパラメータと0.02のGFLOPSの計算負荷しか持たず、リアルタイムのAPP推定は10秒の出力に対してわずか8.49ミリ秒の推論時間で達成された。
2,154例の1,257,141データセグメントを含む大規模・異種周術期データセットにおいて,SBPは41-257 mmHg,DBPは31-234 mmHgであった。
提案したKDCL_sInvResUNetは,平均絶対誤差が10.06 mmHg,平均ピアソン相関が0.88である大規模モデルに比べて,軽量に性能が向上した。
これらの有望な結果にもかかわらず、すべての深層学習モデルは、様々な人口統計学的および心血管的条件に有意なパフォーマンス変化を示し、そのような広範で多様な人口にまたがる一般化能力の限界を浮き彫りにした。
本研究は, 実世界の周術期におけるリアルタイム非閉塞型APBモニタリングの基礎研究であり, この領域における今後の進歩の基盤となるものと考えられる。
関連論文リスト
- A Novel Attention-Augmented Wavelet YOLO System for Real-time Brain Vessel Segmentation on Transcranial Color-coded Doppler [49.03919553747297]
我々は,脳動脈を効率よく捉えることができるAIを利用したリアルタイムCoW自動分割システムを提案する。
Transcranial Color-coded Doppler (TCCD) を用いたAIによる脳血管セグメンテーションの事前研究は行われていない。
提案したAAW-YOLOは, 異方性および対側性CoW容器のセグメンテーションにおいて高い性能を示した。
論文 参考訳(メタデータ) (2025-08-19T14:41:22Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
本研究は、MIMIC-IVデータセットに基づく神経疾患患者を対象とした、ICUにおけるLOS予測のための複数のMLアプローチについて検討する。
評価されたモデルには、古典的MLアルゴリズム(K-Nearest Neighbors、Random Forest、XGBoost、CatBoost)とニューラルネットワーク(LSTM、BERT、テンポラルフュージョントランス)が含まれる。
論文 参考訳(メタデータ) (2025-05-23T14:06:42Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
光胸腺撮影と心電図は、連続血圧モニタリング(BP)を可能にする可能性がある。
しかし、データ品質と患者固有の要因の変化のため、正確で堅牢な機械学習(ML)モデルは依然として困難である。
本研究では,1つのモータリティで事前学習したモデルを効果的に利用して,異なる信号タイプの精度を向上させる方法について検討する。
本手法は, 拡張期BPの最先端精度を約1.5倍に向上し, 拡張期BPの精度を1.5倍に向上させる。
論文 参考訳(メタデータ) (2025-02-10T13:33:12Z) - SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
公開されている注釈付きデータセットの欠如は、堅牢で機械学習駆動のセグメンテーションアルゴリズムの開発を妨げている。
SMILE-UHURAチャレンジは、7T MRIで取得したTime-of-Flightアンジオグラフィーの注釈付きデータセットを提供することで、公開されている注釈付きデータセットのギャップに対処する。
Diceスコアは、それぞれのデータセットで0.838 $pm$0.066と0.716 $pm$ 0.125まで到達し、平均パフォーマンスは0.804 $pm$ 0.15までになった。
論文 参考訳(メタデータ) (2024-11-14T17:06:00Z) - Enhancing Glucose Level Prediction of ICU Patients through Hierarchical Modeling of Irregular Time-Series [4.101915841246237]
本研究は, ICU患者における血糖値の予測を目的としたMulti-source Irregular Time-Series Transformer (MITST) を提案する。
MITSTは様々な臨床データ(検査結果、薬品、バイタルサインを含む)を事前に定義された集計なしで統合する。
MITSTは、AUROCで1.7ポイント(pp)、AUPRCで1.8ppという統計学的に有意な(p 0.001 )改善を達成している。
論文 参考訳(メタデータ) (2024-11-03T03:03:11Z) - TransfoRhythm: A Transformer Architecture Conductive to Blood Pressure Estimation via Solo PPG Signal Capturing [5.255373360156652]
本稿では,最近リリースされた生理学データベースMIMIC-IV上に構築されたトランスフォーマーベースのアーキテクチャであるTransfoRhythmフレームワークを紹介する。
本研究は,カフレスBP推定にMIMIC IVデータセットを適用した最初の研究である。
論文 参考訳(メタデータ) (2024-04-15T00:36:33Z) - A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP)
from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals [1.1695966610359496]
病院で血液圧(BP)の連続モニタリングに使われている方法のほとんどは、侵襲的である。
本研究では,光胸腺図や心電図などの非侵襲的に収集可能な信号からBPを予測するためのオートエンコーダの適用性を検討した。
非常に浅い1次元オートエンコーダは、非常に大きなデータセット上で最先端の性能でSBPとDBPを予測するために関連する特徴を抽出できることがわかった。
論文 参考訳(メタデータ) (2021-11-12T19:34:20Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。