論文の概要: Towards Understanding 3D Vision: the Role of Gaussian Curvature
- arxiv url: http://arxiv.org/abs/2508.11825v1
- Date: Fri, 15 Aug 2025 22:14:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:10.396469
- Title: Towards Understanding 3D Vision: the Role of Gaussian Curvature
- Title(参考訳): 3Dビジョンの理解に向けて : ガウス曲率の役割
- Authors: Sherlon Almeida da Silva, Davi Geiger, Luiz Velho, Moacir Antonelli Ponti,
- Abstract要約: ディープニューラルネットワークはステレオマッチングや単眼深度再構成といったタスクで顕著な成功を収めている。
三次元表面モデリングにおけるガウス曲率の役割について検討する。
- 参考スコア(独自算出の注目度): 3.336618863186337
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent advances in computer vision have predominantly relied on data-driven approaches that leverage deep learning and large-scale datasets. Deep neural networks have achieved remarkable success in tasks such as stereo matching and monocular depth reconstruction. However, these methods lack explicit models of 3D geometry that can be directly analyzed, transferred across modalities, or systematically modified for controlled experimentation. We investigate the role of Gaussian curvature in 3D surface modeling. Besides Gaussian curvature being an invariant quantity under change of observers or coordinate systems, we demonstrate using the Middlebury stereo dataset that it offers: (i) a sparse and compact description of 3D surfaces, (ii) state-of-the-art monocular and stereo methods seem to implicitly consider it, but no explicit module of such use can be extracted, (iii) a form of geometric prior that can inform and improve 3D surface reconstruction, and (iv) a possible use as an unsupervised metric for stereo methods.
- Abstract(参考訳): コンピュータビジョンの最近の進歩は、ディープラーニングと大規模データセットを活用するデータ駆動アプローチに大きく依存している。
ディープニューラルネットワークはステレオマッチングや単眼深度再構成といったタスクで顕著な成功を収めている。
しかし、これらの手法には、直接解析したり、モダリティを横断したり、制御された実験のために体系的に修正されたりできる3次元幾何学の明示的なモデルが欠如している。
三次元表面モデリングにおけるガウス曲率の役割について検討する。
観測者や座標系の変化による不変量であるガウス曲率に加えて、ミドルベリーステレオデータセットを用いて示す。
(i)3次元曲面のスパースでコンパクトな記述
(ii)最先端の単分子およびステレオ法は暗黙的にそれを考えるように思われるが、そのような使用の明示的なモジュールは抽出できない。
三 立体表面の復元を図り、改善することができる幾何学的先行形態
(iv)ステレオメソッドの教師なしメトリックとしての使用の可能性。
関連論文リスト
- Object Gaussian for Monocular 6D Pose Estimation from Sparse Views [4.290993205307184]
ガウス的手法を用いたスパースビューオブジェクトポーズ推定のための新しいフレームワークであるSGPoseを紹介する。
最大10ビューを与えられたSGPoseは、ランダムな立方体から始めることで幾何学的認識表現を生成する。
典型的なベンチマーク、特にOcclusion LM-Oデータセットの実験では、SGPoseはスパースビューの制約下であっても既存のメソッドよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-09-04T10:03:11Z) - 3D Geometry-aware Deformable Gaussian Splatting for Dynamic View Synthesis [49.352765055181436]
動的ビュー合成のための3次元幾何学的変形可能なガウススメッティング法を提案する。
提案手法は,動的ビュー合成と3次元動的再構成を改良した3次元形状認識変形モデリングを実現する。
論文 参考訳(メタデータ) (2024-04-09T12:47:30Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
ユーザがリアルタイムで大きな変形で暗黙の表現を直接変形または操作することは困難である。
我々は,インタラクティブな変形を可能にする新しいGSベースの手法を開発した。
提案手法は,高いフレームレートで良好なレンダリング結果を維持しつつ,高品質な再構成と効率的な変形を実現する。
論文 参考訳(メタデータ) (2024-02-07T12:36:54Z) - Single-Stage 3D Geometry-Preserving Depth Estimation Model Training on
Dataset Mixtures with Uncalibrated Stereo Data [4.199844472131922]
GP$2$, 汎用および幾何保存型トレーニングスキームを単視点深度推定のために提案する。
GP$2$のトレーニングモデルでは,PCMに依存した手法よりも精度と速度が優れていることを示す。
また、SVDEモデルでは、幾何的完全データがトレーニングセットのマイナーな部分を含む場合でも、幾何学的に正しい深さを予測することができることを示す。
論文 参考訳(メタデータ) (2023-06-05T13:49:24Z) - Normal Transformer: Extracting Surface Geometry from LiDAR Points Enhanced by Visual Semantics [7.507853813361308]
本稿では,LiDARとカメラセンサから得られた3次元点雲と2次元カラー画像を利用して表面正規化を行うマルチモーダル手法を提案する。
本稿では,視覚的意味論と3次元幾何学的情報を巧みに融合した,トランスフォーマーに基づくニューラルネットワークアーキテクチャを提案する。
交通シーンを模倣したシミュレーション3D環境から,提案モデルが学習可能であることが確認された。
論文 参考訳(メタデータ) (2022-11-19T03:55:09Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
この研究の直感は、与えられたメッシュ間の幾何学的不整合を強力な自己認識機構で知覚することである。
本研究では,グローバルな幾何学的不整合に対する3次元構造的知覚能力を有する新しい幾何学コントラスト変換器を提案する。
本稿では, クロスデータセット3次元ポーズ伝達タスクのための半合成データセットとともに, 潜時等尺正則化モジュールを提案する。
論文 参考訳(メタデータ) (2021-12-14T13:14:24Z) - Joint stereo 3D object detection and implicit surface reconstruction [39.30458073540617]
本稿では,SO(3)の正確なオブジェクト指向を復元し,ステレオRGB画像から暗黙的な剛性形状を同時に予測できる学習ベースのフレームワークS-3D-RCNNを提案する。
方向推定のためには、局所的な外観を観測角度にマッピングする従来の研究とは対照的に、意味のある幾何学的表現(IGR)を抽出して進歩的なアプローチを提案する。
このアプローチは、知覚強度を1つか2つのビューからオブジェクト部分座標に変換するディープモデルにより、カメラ座標系において、直接自我中心のオブジェクト指向推定を実現する。
3次元境界ボックス内におけるより詳細な記述を実現するため,ステレオ画像からの暗黙的形状推定問題について検討する。
論文 参考訳(メタデータ) (2021-11-25T05:52:30Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。