論文の概要: "My productivity is boosted, but ..." Demystifying Users' Perception on AI Coding Assistants
- arxiv url: http://arxiv.org/abs/2508.12285v1
- Date: Sun, 17 Aug 2025 08:22:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:10.660587
- Title: "My productivity is boosted, but ..." Demystifying Users' Perception on AI Coding Assistants
- Title(参考訳): 「生産性は向上するが...」AIコーディングアシスタントに対するユーザの認識を損なう
- Authors: Yunbo Lyu, Zhou Yang, Jieke Shi, Jianming Chang, Yue Liu, David Lo,
- Abstract要約: Visual Studio Code Marketplaceから1,085のAIコーディングアシスタントを特定します。
次に、十分なインストールとレビューを持つ32のAIコーディングアシスタントからサンプリングされたユーザレビューを手動で分析し、これらのアシスタントに関するユーザの懸念とフィードバックに関する包括的な分類を構築します。
ユーザニーズを満たすAIコーディングアシスタントの強化を導くための5つの実践的意味と提案を提案する。
- 参考スコア(独自算出の注目度): 13.118506949442564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to explore fundamental questions in the era when AI coding assistants like GitHub Copilot are widely adopted: what do developers truly value and criticize in AI coding assistants, and what does this reveal about their needs and expectations in real-world software development? Unlike previous studies that conduct observational research in controlled and simulated environments, we analyze extensive, first-hand user reviews of AI coding assistants, which capture developers' authentic perspectives and experiences drawn directly from their actual day-to-day work contexts. We identify 1,085 AI coding assistants from the Visual Studio Code Marketplace. Although they only account for 1.64% of all extensions, we observe a surge in these assistants: over 90% of them are released within the past two years. We then manually analyze the user reviews sampled from 32 AI coding assistants that have sufficient installations and reviews to construct a comprehensive taxonomy of user concerns and feedback about these assistants. We manually annotate each review's attitude when mentioning certain aspects of coding assistants, yielding nuanced insights into user satisfaction and dissatisfaction regarding specific features, concerns, and overall tool performance. Built on top of the findings-including how users demand not just intelligent suggestions but also context-aware, customizable, and resource-efficient interactions-we propose five practical implications and suggestions to guide the enhancement of AI coding assistants that satisfy user needs.
- Abstract(参考訳): この論文は、GitHub CopilotのようなAIコーディングアシスタントが広く採用されている時代の基本的な問題を探ることを目的としている。
制御およびシミュレーション環境における観察的研究を行う従来の研究とは異なり、我々はAIコーディングアシスタントの広範なユーザレビューを分析し、実際の日々の作業コンテキストから直接、開発者の真の視点と経験をキャプチャする。
Visual Studio Code Marketplaceから1,085のAIコーディングアシスタントを特定します。
それらはすべての拡張の1.64%に過ぎませんが、これらのアシスタントの急増を観察します。
次に、十分なインストールとレビューを持つ32のAIコーディングアシスタントからサンプリングされたユーザレビューを手動で分析し、これらのアシスタントに関するユーザの懸念とフィードバックに関する包括的な分類を構築します。
コーディングアシスタントの特定の側面に言及するとき、各レビューの態度を手動でアノテートし、ユーザ満足度や、特定の機能、関心事、ツール全体のパフォーマンスに対する不満に関する微妙な洞察を与えます。
ユーザのニーズを満たすAIコーディングアシスタントの強化を導くための,5つの実践的な意味と提案を提案する。
関連論文リスト
- Code with Me or for Me? How Increasing AI Automation Transforms Developer Workflows [66.1850490474361]
コーディングエージェントとの開発者インタラクションを探求する最初の学術的研究を行う。
私たちは、GitHub CopilotとOpenHandsの2つの主要なコピロとエージェントコーディングアシスタントを評価します。
この結果から、エージェントは、コピロトを超越した方法で開発者を支援する可能性を示唆している。
論文 参考訳(メタデータ) (2025-07-10T20:12:54Z) - A Multi-Year Grey Literature Review on AI-assisted Test Automation [46.97326049485643]
テスト自動化(TA)技術は、ソフトウェアエンジニアリングの品質保証には不可欠だが、制限に直面している。
業界でAIが広く使われていることを考えると、真実の情報源はグレー文学だけでなく、専門家の心にも当てはまる。
この研究は、グレーの文献を調査し、AIがTAでどのように採用されているかを調査し、解決する問題、そのソリューション、利用可能なツールに焦点を当てる。
論文 参考訳(メタデータ) (2024-08-12T15:26:36Z) - Using AI-Based Coding Assistants in Practice: State of Affairs, Perceptions, and Ways Forward [9.177785129949]
私たちは、開発者がAIアシスタントをどのように使っているのかをよりよく理解することを目指しています。
我々は、AIアシスタントの使用方法に関する大規模な調査を行った。
論文 参考訳(メタデータ) (2024-06-11T23:10:43Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - Developer Experiences with a Contextualized AI Coding Assistant:
Usability, Expectations, and Outcomes [11.520721038793285]
この研究は、コンテキスト化されたコーディングAIアシスタントであるStackSpot AIを制御された環境で使用した62人の参加者の初期体験に焦点を当てる。
アシスタントの使用は、大幅な時間を節約し、ドキュメントへのアクセスを容易にし、内部APIの正確なコードを生成する結果となった。
コーディングアシスタントが、複雑なコードを扱う際の変数応答や制限と同様に、よりコンテキスト情報にアクセスできるようにするために必要な知識ソースに関連する課題が観察された。
論文 参考訳(メタデータ) (2023-11-30T10:52:28Z) - Collaborative, Code-Proximal Dynamic Software Visualization within Code
Editors [55.57032418885258]
本稿では,コードエディタに組み込むソフトウェアビジュアライゼーション手法の設計と実装について紹介する。
私たちのコントリビューションは、ソフトウェアシステムの実行時の動作の動的解析を使用するという点で、関連する作業と異なります。
私たちの視覚化アプローチは、一般的なリモートペアプログラミングツールを強化し、共有コード都市を利用することで協調的に使用できます。
論文 参考訳(メタデータ) (2023-08-30T06:35:40Z) - A Large-Scale Survey on the Usability of AI Programming Assistants:
Successes and Challenges [23.467373994306524]
実際には、開発者はAIプログラミングアシスタントの最初の提案を高い頻度で受け入れない。
これらのツールを使用して開発者のプラクティスを理解するため、多数の開発者を対象に調査を実施しました。
開発者がAIプログラミングアシスタントを使用する動機は、開発者がキーストロークを減らしたり、プログラミングタスクを素早く終了したり、構文をリコールするのに役立つためである。
また、開発者がこれらのツールを使用しない最も重要な理由は、これらのツールが特定の機能的あるいは非機能的要件に対処するコードを出力していないためです。
論文 参考訳(メタデータ) (2023-03-30T03:21:53Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。