論文の概要: Local Cluster Cardinality Estimation for Adaptive Mean Shift
- arxiv url: http://arxiv.org/abs/2508.12450v1
- Date: Sun, 17 Aug 2025 17:53:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:10.776982
- Title: Local Cluster Cardinality Estimation for Adaptive Mean Shift
- Title(参考訳): 適応平均シフトの局所的クラスタ心力推定
- Authors: Étienne Pepin,
- Abstract要約: 本稿では,局所スケールとクラスタ濃度の異なるデータセットを対象とした適応平均シフトアルゴリズムを提案する。
提案アルゴリズムは,最近提案した適応平均シフト法よりも優れた性能を示し,より広範なクラスタリングベンチマーク上での競合性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article presents an adaptive mean shift algorithm designed for datasets with varying local scale and cluster cardinality. Local distance distributions, from a point to all others, are used to estimate the cardinality of the local cluster by identifying a local minimum in the density of the distance distribution. Based on these cardinality estimates, local cluster parameters are then computed for the entire cluster in contrast to KDE-based methods, which provide insight only into localized regions of the cluster. During the mean shift execution, the cluster cardinality estimate is used to adaptively adjust the bandwidth and the mean shift kernel radius threshold. Our algorithm outperformed a recently proposed adaptive mean shift method on its original dataset and demonstrated competitive performance on a broader clustering benchmark.
- Abstract(参考訳): 本稿では,局所スケールとクラスタ濃度の異なるデータセットを対象とした適応平均シフトアルゴリズムを提案する。
局所的距離分布は、ある点から他の点まで、距離分布の密度の局所的極小を同定することにより、局所的クラスタの濃度を推定するために用いられる。
これらの濃度推定に基づいて、KDEに基づく手法とは対照的に、クラスタ全体の局所的なクラスタパラメータが計算され、クラスタの局所的な領域にのみ洞察を与える。
平均シフト実行中に、クラスタ濃度推定を用いて、帯域幅と平均シフトカーネル半径閾値を適応的に調整する。
提案アルゴリズムは,最近提案した適応平均シフト法よりも優れた性能を示し,より広範なクラスタリングベンチマーク上での競合性能を示した。
関連論文リスト
- K*-Means: A Parameter-free Clustering Algorithm [55.20132267309382]
k*-meansは、kや他のパラメータをセットする必要がない新しいクラスタリングアルゴリズムである。
最小記述長の原理を用いて、クラスタの分割とマージによって最適なクラスタ数k*を自動的に決定する。
k*-平均が収束することが保証されることを証明し、kが未知のシナリオにおいて既存のメソッドよりも著しく優れていることを実験的に証明する。
論文 参考訳(メタデータ) (2025-05-17T08:41:07Z) - Radius-Guided Post-Clustering for Shape-Aware, Scalable Refinement of k-Means Results [1.9580473532948401]
標準k平均の後、各クラスター中心は半径(割り当てられた点までの距離)が割り当てられ、半径が重なり合うクラスタがマージされる。
この後処理ステップは、k が k である限り、正確な k の要求を緩める。
この手法は意味のあるマージの上に非推定形状を再構成することができる。
論文 参考訳(メタデータ) (2025-04-28T22:30:53Z) - Clustering Based on Density Propagation and Subcluster Merging [92.15924057172195]
本稿では,クラスタ数を自動的に決定し,データ空間とグラフ空間の両方に適用可能な密度に基づくノードクラスタリング手法を提案する。
二つのノード間の距離を計算する従来の密度クラスタリング法とは異なり,提案手法は伝播過程を通じて密度を決定する。
論文 参考訳(メタデータ) (2024-11-04T04:09:36Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Simplex Clustering via sBeta with Applications to Online Adjustment of Black-Box Predictions [16.876111500144667]
我々はk-sBetasと呼ばれる新しい確率的クラスタリング手法を提案する。
クラスタリング分布の総括的最大アプリート(MAP)視点を提供する。
我々のコードと既存の単純なクラスタリング手法との比較および導入したソフトマックス予測ベンチマークが公開されている。
論文 参考訳(メタデータ) (2022-07-30T18:29:11Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
マルチカーネルクラスタリング(MKC)は、ベースカーネルの集合から最適な情報融合を実現するためにコミットされる。
本稿では,新しい局所サンプル重み付きマルチカーネルクラスタリングモデルを提案する。
実験により, LSWMKCはより優れた局所多様体表現を有し, 既存のカーネルやグラフベースのクラスタリングアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2022-07-05T05:00:38Z) - Neural Mixture Models with Expectation-Maximization for End-to-end Deep
Clustering [0.8543753708890495]
本稿では,ニューラルネットワークを用いた混合モデルに基づくクラスタリングを実現する。
我々は,Eステップとして前方パス,Mステップとして後方パスを動作させるバッチワイズEMイテレーションにより,ネットワークのエンドツーエンドをトレーニングする。
トレーニングされたネットワークは、k-meansに依存した単一ステージのディープクラスタリング手法よりも優れています。
論文 参考訳(メタデータ) (2021-07-06T08:00:58Z) - Hyperdimensional Computing for Efficient Distributed Classification with
Randomized Neural Networks [5.942847925681103]
本研究では,データを中央に保存することも共有することもできない状況下で利用できる分散分類について検討する。
ローカルな分類器を他のエージェントと共有する場合に、ロッキーな圧縮アプローチを適用することにより、分散分類のためのより効率的な解を提案する。
論文 参考訳(メタデータ) (2021-06-02T01:33:56Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。