論文の概要: Radius-Guided Post-Clustering for Shape-Aware, Scalable Refinement of k-Means Results
- arxiv url: http://arxiv.org/abs/2504.20293v1
- Date: Mon, 28 Apr 2025 22:30:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.685616
- Title: Radius-Guided Post-Clustering for Shape-Aware, Scalable Refinement of k-Means Results
- Title(参考訳): k-Means結果の形状・拡張性向上のためのラディウスガイドポストクラスタリング
- Authors: Stefan Kober,
- Abstract要約: 標準k平均の後、各クラスター中心は半径(割り当てられた点までの距離)が割り当てられ、半径が重なり合うクラスタがマージされる。
この後処理ステップは、k が k である限り、正確な k の要求を緩める。
この手法は意味のあるマージの上に非推定形状を再構成することができる。
- 参考スコア(独自算出の注目度): 1.9580473532948401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional k-means clustering underperforms on non-convex shapes and requires the number of clusters k to be specified in advance. We propose a simple geometric enhancement: after standard k-means, each cluster center is assigned a radius (the distance to its farthest assigned point), and clusters whose radii overlap are merged. This post-processing step loosens the requirement for exact k: as long as k is overestimated (but not excessively), the method can often reconstruct non-convex shapes through meaningful merges. We also show that this approach supports recursive partitioning: clustering can be performed independently on tiled regions of the feature space, then globally merged, making the method scalable and suitable for distributed systems. Implemented as a lightweight post-processing step atop scikit-learn's k-means, the algorithm performs well on benchmark datasets, achieving high accuracy with minimal additional computation.
- Abstract(参考訳): 従来のk-平均クラスタリングは、非凸形状で性能が低く、事前に指定するクラスタ数kを必要とする。
標準的なk-平均の後、各クラスタ中心に半径(最遠の割り当て点までの距離)を割り当て、ラジイ重なり合うクラスタをマージする、単純な幾何学的拡張を提案する。
この後処理ステップは、正確な k の要求を緩める: k が過大評価されている限り(しかし過度ではない)、この方法は意味のあるマージを通して非凸形状を再構成することができる。
クラスタリングは機能空間のタイル化された領域上で独立して実行され、その後グローバルにマージされ、スケーラブルで分散システムに適した方法が実現される。
scikit-learnのk-meansの上の軽量な後処理ステップとして実装されたこのアルゴリズムは、ベンチマークデータセットでよく機能し、最小限の追加計算で高い精度を達成する。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Revisiting Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [69.15976031704687]
IAC (Instance-Adaptive Clustering, インスタンス適応クラスタリング) を提案する。
IACは$ MathcalO(n, textpolylog(n) $の計算複雑性を維持しており、大規模問題に対してスケーラブルで実用的なものである。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - An enhanced method of initial cluster center selection for K-means
algorithm [0.0]
K-meansアルゴリズムの初期クラスタ選択を改善するための新しい手法を提案する。
Convex Hullアルゴリズムは、最初の2つのセントロイドの計算を容易にし、残りの2つは、以前選択された中心からの距離に応じて選択される。
We obtained only 7.33%, 7.90%, and 0% clustering error in Iris, Letter, and Ruspini data。
論文 参考訳(メタデータ) (2022-10-18T00:58:50Z) - K-Splits: Improved K-Means Clustering Algorithm to Automatically Detect
the Number of Clusters [0.12313056815753944]
本稿では,k-meansに基づく改良された階層型アルゴリズムであるk-splitsを紹介する。
提案手法の主な利点は,精度と速度である。
論文 参考訳(メタデータ) (2021-10-09T23:02:57Z) - Determinantal consensus clustering [77.34726150561087]
本稿では,クラスタリングアルゴリズムのランダム再起動における決定点プロセス (DPP) の利用を提案する。
DPPは部分集合内の中心点の多様性を好んでいる。
DPPとは対照的に、この手法は多様性の確保と、すべてのデータフェースについて良好なカバレッジを得るために失敗することを示す。
論文 参考訳(メタデータ) (2021-02-07T23:48:24Z) - Adaptive Explicit Kernel Minkowski Weighted K-means [1.3535770763481905]
カーネル K-平均は、K-平均をカーネル空間に拡張し、非線形構造を捉えることができ、任意の形状のクラスターを識別することができる。
本稿では, 線形および非線形アプローチの利点を, 駆動された対応する有限次元特徴写像を用いて組み合わせる手法を提案する。
論文 参考訳(メタデータ) (2020-12-04T19:14:09Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Ball k-means [53.89505717006118]
Ball k-meansアルゴリズムは、ポイントセントロイド距離計算の削減に集中して、クラスタを記述するためにボールを使用する。
高速、余分なパラメータなし、単純設計のボールk平均アルゴリズムは、素早いk平均アルゴリズムを全面的に置き換える。
論文 参考訳(メタデータ) (2020-05-02T10:39:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。