論文の概要: Skin Cancer Classification: Hybrid CNN-Transformer Models with KAN-Based Fusion
- arxiv url: http://arxiv.org/abs/2508.12484v1
- Date: Sun, 17 Aug 2025 19:57:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:10.796452
- Title: Skin Cancer Classification: Hybrid CNN-Transformer Models with KAN-Based Fusion
- Title(参考訳): 皮膚癌分類:kan-based Fusionを用いたハイブリッドCNN変換器モデル
- Authors: Shubhi Agarwal, Amulya Kumar Mahto,
- Abstract要約: Convolutional Kolmogorov-Arnold Network (CKAN) を用いた逐次および並列ハイブリッドCNN-Transformerモデルについて検討する。
そこでCNNは局所的な空間的特徴を抽出し、トランスフォーマーはグローバルな依存関係をモデル化し、CKANは表現学習を改善するために非線形な特徴融合を促進する。
HAM10000データセットで92.81%の精度と92.47%のF1スコア、PAD-UFESデータセットで97.83%のF1スコア、91.79%のF1スコア、91.17%のF1スコアを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skin cancer classification is a crucial task in medical image analysis, where precise differentiation between malignant and non-malignant lesions is essential for early diagnosis and treatment. In this study, we explore Sequential and Parallel Hybrid CNN-Transformer models with Convolutional Kolmogorov-Arnold Network (CKAN). Our approach integrates transfer learning and extensive data augmentation, where CNNs extract local spatial features, Transformers model global dependencies, and CKAN facilitates nonlinear feature fusion for improved representation learning. To assess generalization, we evaluate our models on multiple benchmark datasets (HAM10000,BCN20000 and PAD-UFES) under varying data distributions and class imbalances. Experimental results demonstrate that hybrid CNN-Transformer architectures effectively capture both spatial and contextual features, leading to improved classification performance. Additionally, the integration of CKAN enhances feature fusion through learnable activation functions, yielding more discriminative representations. Our proposed approach achieves competitive performance in skin cancer classification, demonstrating 92.81% accuracy and 92.47% F1-score on the HAM10000 dataset, 97.83% accuracy and 97.83% F1-score on the PAD-UFES dataset, and 91.17% accuracy with 91.79% F1- score on the BCN20000 dataset highlighting the effectiveness and generalizability of our model across diverse datasets. This study highlights the significance of feature representation and model design in advancing robust and accurate medical image classification.
- Abstract(参考訳): 皮膚がん分類は、悪性病変と非悪性病変の正確な鑑別が早期診断と治療に不可欠である医療画像解析において重要な課題である。
本研究では,コンボリューショナル・コルモゴロフ・アルノルドネットワーク(CKAN)を用いた逐次・並列ハイブリッドCNN変換器モデルについて検討する。
そこでCNNは局所的な空間的特徴を抽出し、トランスフォーマーはグローバルな依存関係をモデル化し、CKANは表現学習を改善するために非線形な特徴融合を促進する。
一般化を評価するため,複数のベンチマークデータセット (HAM10000,BCN20000,PAD-UFES) を用いて,データ分布やクラス不均衡の変動を考慮したモデルの評価を行った。
実験により,CNN-Transformerハイブリッドアーキテクチャは空間的特徴と文脈的特徴の両方を効果的に捕捉し,分類性能が向上することが示された。
さらに、CKANの統合により、学習可能なアクティベーション関数による機能融合が強化され、より識別的な表現が得られる。
HAM10000データセットで92.81%の精度と92.47%のF1スコア、PAD-UFESデータセットで97.83%のF1スコア、BCN20000データセットで91.79%のF1-スコアで91.17%の精度、BCN20000データセットでモデルの有効性と一般化性を示す。
本研究は、堅牢で正確な医用画像分類における特徴表現とモデル設計の重要性を強調した。
関連論文リスト
- CoTCoNet: An Optimized Coupled Transformer-Convolutional Network with an Adaptive Graph Reconstruction for Leukemia Detection [0.3573481101204926]
白血病の分類のためのCoTCoNet(Coupled Transformer Convolutional Network)フレームワークを提案する。
我々のフレームワークは、包括的グローバル特徴とスケーラブルな空間パターンを捉え、複雑で大規模な血液学的特徴の同定を可能にする。
それぞれ0.9894と0.9893のF1スコアレートを達成している。
論文 参考訳(メタデータ) (2024-10-11T13:31:28Z) - Comparative Analysis and Ensemble Enhancement of Leading CNN Architectures for Breast Cancer Classification [0.0]
本研究は,病理組織像を用いた乳癌分類への新規かつ正確なアプローチを提案する。
さまざまな画像データセット間で、主要な畳み込みニューラルネットワーク(CNN)モデルを体系的に比較する。
そこで本研究では,スタンドアロンCNNモデルにおいて,例外的分類精度を実現するために必要な設定について検討した。
論文 参考訳(メタデータ) (2024-10-04T11:31:43Z) - Classification of Endoscopy and Video Capsule Images using CNN-Transformer Model [1.0994755279455526]
本研究では、トランスフォーマーと畳み込みニューラルネットワーク(CNN)の利点を組み合わせて分類性能を向上させるハイブリッドモデルを提案する。
GastroVisionデータセットでは,精度,リコール,F1スコア,精度,マシューズ相関係数(MCC)が0.8320,0.8386,0.8324,0.8386,0.8191であった。
論文 参考訳(メタデータ) (2024-08-20T11:05:32Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
本研究では, 育種試験におけるサツマイモクローンの選択プロセスの向上を目的とした, 機械学習アルゴリズムの適用について検討する。
本研究は, 高収率, 耐病性, 耐気候性ポテト品種を効率的に同定することの課題に対処する。
論文 参考訳(メタデータ) (2024-04-04T00:49:05Z) - CIMIL-CRC: a clinically-informed multiple instance learning framework for patient-level colorectal cancer molecular subtypes classification from H\&E stained images [42.771819949806655]
CIMIL-CRCは、事前学習した特徴抽出モデルと主成分分析(PCA)を効率よく組み合わせ、全てのパッチから情報を集約することで、MSI/MSS MIL問題を解決するフレームワークである。
我々は,TCGA-CRC-DXコホートを用いたモデル開発のための5倍のクロスバリデーション実験装置を用いて,曲線下平均面積(AUC)を用いてCIMIL-CRC法の評価を行った。
論文 参考訳(メタデータ) (2024-01-29T12:56:11Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。