論文の概要: Breaking Language Barriers: Equitable Performance in Multilingual Language Models
- arxiv url: http://arxiv.org/abs/2508.12662v1
- Date: Mon, 18 Aug 2025 06:50:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:11.04103
- Title: Breaking Language Barriers: Equitable Performance in Multilingual Language Models
- Title(参考訳): 言語障壁を打破する:多言語言語モデルにおける等価性能
- Authors: Tanay Nagar, Grigorii Khvatskii, Anna Sokol, Nitesh V. Chawla,
- Abstract要約: LLMは、ヒンディー語やスワヒリ語のような低リソース言語(LRL)において、英語のような高リソース言語(HRL)と比較して、CSR(Common Sense Reasoning)タスクにおいて、さらにパフォーマンスが悪くなる。
我々のアプローチは、制御された言語混合法を用いて生成された合成コード切替テキスト上でLLMを微調整することである。
そこで本稿では,CommonSenseQAデータセットから派生した,3つの異なる言語比構成を特徴とする合成符号切替テキストのデータセットを提案する。
- 参考スコア(独自算出の注目度): 17.343456129678067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cutting-edge LLMs have emerged as powerful tools for multilingual communication and understanding. However, LLMs perform worse in Common Sense Reasoning (CSR) tasks when prompted in low-resource languages (LRLs) like Hindi or Swahili compared to high-resource languages (HRLs) like English. Equalizing this inconsistent access to quality LLM outputs is crucial to ensure fairness for speakers of LRLs and across diverse linguistic communities. In this paper, we propose an approach to bridge this gap in LLM performance. Our approach involves fine-tuning an LLM on synthetic code-switched text generated using controlled language-mixing methods. We empirically demonstrate that fine-tuning LLMs on synthetic code-switched datasets leads to substantial improvements in LRL model performance while preserving or enhancing performance in HRLs. Additionally, we present a new dataset of synthetic code-switched text derived from the CommonSenseQA dataset, featuring three distinct language ratio configurations.
- Abstract(参考訳): カットエッジ LLM は多言語コミュニケーションと理解のための強力なツールとして登場した。
しかし、LLMは、ヒンディー語やスワヒリ語のような低リソース言語(LRL)において、英語のような高リソース言語(HRL)と比較して、CSR(Common Sense Reasoning)タスクにおいてより悪いパフォーマンスを発揮する。
高品質なLLM出力へのこの一貫性のないアクセスを平等にすることは、LRLの話者と多様な言語コミュニティの公平性を確保するために不可欠である。
本稿では,LLM性能のこのギャップを埋める手法を提案する。
我々のアプローチは、制御された言語混合法を用いて生成された合成コード切替テキスト上でLLMを微調整することである。
合成符号切替データセット上での微調整 LLM は,HRL の性能を維持したり向上させたりしながら,LRL モデルの性能を大幅に向上させることを示す。
さらに,CommonSenseQAデータセットから派生した,3つの異なる言語比構成を特徴とする合成符号切替テキストのデータセットを提案する。
関連論文リスト
- CHAI for LLMs: Improving Code-Mixed Translation in Large Language Models through Reinforcement Learning with AI Feedback [11.223762031003671]
大規模言語モデル(LLM)は、様々なNLPタスクにまたがる顕著な機能を示しているが、コード混在(またはコード切替)言語理解に苦慮している。
本稿では,多言語LLMのコード混合言語処理能力を向上させるための新しいフレームワークであるCHAIを提案する。
解析の結果,CHAI を用いた LLM は,コード混在翻訳タスクにおいて,最先端のオープンソース LLM よりも25.66% 向上していることがわかった。
論文 参考訳(メタデータ) (2024-11-13T22:56:00Z) - Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - Bridge-Coder: Unlocking LLMs' Potential to Overcome Language Gaps in Low-Resource Code [31.48411893252137]
LLM(Large Language Models)は、Pythonのような高リソースプログラミング言語(HRPL)のコードを生成する能力を示すが、RacketやDのような低リソースプログラミング言語(LRPL)と大きく競合する。
このパフォーマンスギャップは、デジタル格差を深くし、LRPLを使用する開発者がLLMの進歩から等しく利益を得るのを防ぎ、表現不足のプログラミングコミュニティにおけるイノベーションの格差を補強する。
LRPLの性能を高めるために,LLMの本質的な能力を活用したBridge-Coderという新しい手法を導入する。
論文 参考訳(メタデータ) (2024-10-24T17:55:03Z) - Bridging the Language Gap: Enhancing Multilingual Prompt-Based Code Generation in LLMs via Zero-Shot Cross-Lingual Transfer [5.355430735475281]
本稿では,多言語プロンプトベースのコード生成の複雑さについて検討する。
評価の結果,非英語のプロンプトにおけるコード品質の相違が明らかとなった。
本稿では,ニューラルプロジェクション手法を用いたゼロショット言語間アプローチを提案する。
論文 参考訳(メタデータ) (2024-08-19T05:11:46Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Cost-Performance Optimization for Processing Low-Resource Language Tasks Using Commercial LLMs [45.44796295841526]
大規模言語モデル(LLM)は、高リソース言語(HRL)に対する印象的なゼロ/ファウショット推論と生成品質を示す。
いくつかは低リソース言語(LRL)でトレーニングされ、優れたパフォーマンスを実現しています。
LLM は HRL よりも LRL よりも多くのトークンを生成するため,LRL が価格面で不利であることを示す。
論文 参考訳(メタデータ) (2024-03-08T16:37:36Z) - Boosting Large Language Model for Speech Synthesis: An Empirical Study [86.89548753080432]
大規模言語モデル(LLM)は自然言語処理において大きな進歩を遂げており、言語能力は音声や視覚など他のモダリティにも拡張されている。
我々は,事前学習したLLM LLaMA/OPTと音声合成モデルVALL-Eを組み合わせることで,LLMの強化と音声生成能力の総合的な実証調査を行う。
テキストエンコーダとしてLLMとVALL-Eを組み合わせることで,LLMとVALL-Eの3つの統合手法を比較した。
論文 参考訳(メタデータ) (2023-12-30T14:20:04Z) - Okapi: Instruction-tuned Large Language Models in Multiple Languages
with Reinforcement Learning from Human Feedback [61.83548032416181]
複数の言語を対象としたRLHFに基づく命令調整型LLMシステムであるOkapiを提案する。
オカピは26の多言語言語でインストラクションと応答ランクデータを導入し、将来の多言語LLM研究の促進と開発に役立てている。
論文 参考訳(メタデータ) (2023-07-29T18:01:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。