論文の概要: CLoE: Curriculum Learning on Endoscopic Images for Robust MES Classification
- arxiv url: http://arxiv.org/abs/2508.13280v1
- Date: Mon, 18 Aug 2025 18:00:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.695088
- Title: CLoE: Curriculum Learning on Endoscopic Images for Robust MES Classification
- Title(参考訳): CLoE:ロバストMES分類のための内視鏡画像のカリキュラム学習
- Authors: Zeynep Ozdemir, Hacer Yalim Keles, Omer Ozgur Tanriover,
- Abstract要約: 潰瘍性大腸炎の評価には内視鏡像からの重症度の推定が不可欠である。
ラベル信頼性と順序構造の両方を考慮したカリキュラム学習フレームワークであるCLoEを提案する。
LIMUCとHyperKvasirデータセットの実験では、CNNとTransformerの両方を使用して、CLoEが一貫してパフォーマンスを改善していることを示している。
- 参考スコア(独自算出の注目度): 1.8024397171920885
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Estimating disease severity from endoscopic images is essential in assessing ulcerative colitis, where the Mayo Endoscopic Subscore (MES) is widely used to grade inflammation. However, MES classification remains challenging due to label noise from inter-observer variability and the ordinal nature of the score, which standard models often ignore. We propose CLoE, a curriculum learning framework that accounts for both label reliability and ordinal structure. Image quality, estimated via a lightweight model trained on Boston Bowel Preparation Scale (BBPS) labels, is used as a proxy for annotation confidence to order samples from easy (clean) to hard (noisy). This curriculum is further combined with ResizeMix augmentation to improve robustness. Experiments on the LIMUC and HyperKvasir datasets, using both CNNs and Transformers, show that CLoE consistently improves performance over strong supervised and self-supervised baselines. For instance, ConvNeXt-Tiny reaches 82.5\% accuracy and a QWK of 0.894 on LIMUC with low computational cost. These results highlight the potential of difficulty-aware training strategies for improving ordinal classification under label uncertainty. Code will be released at https://github.com/zeynepozdemir/CLoE.
- Abstract(参考訳): 潰瘍性大腸炎では内視鏡像からの重症度の推定が不可欠であり,マヨ内視鏡亜スコア(MES)が炎症の診断に広く用いられている。
しかし、MES分類は、標準モデルでしばしば無視される、サーバ間変動のラベルノイズとスコアの順序性のため、依然として困難である。
ラベル信頼性と順序構造の両方を考慮したカリキュラム学習フレームワークであるCLoEを提案する。
画像の品質は、Boston Bowel prepared Scale (BBPS)ラベルでトレーニングされた軽量モデルで見積もられ、アノテーションの信頼性をプロキシとして使用して、簡単な(クリーン)から難しい(ノイズ)サンプルを注文する。
このカリキュラムはさらに、堅牢性を改善するためにResizeMix拡張と組み合わせられている。
LIMUCとHyperKvasirデータセットの実験では、CNNとTransformersの両方を使用して、CLoEは、強力な教師付きベースラインと自己教師付きベースラインよりも一貫してパフォーマンスを改善している。
例えば、ConvNeXt-Tiny は 82.5\% の精度に達し、計算コストの低い LIMUC 上での QWK は 0.894 である。
これらの結果は,ラベルの不確実性の下での順序分類を改善するための難易度学習戦略の可能性を強調した。
コードはhttps://github.com/zeynepozdemir/CLoE.comでリリースされる。
関連論文リスト
- CLASS-M: Adaptive stain separation-based contrastive learning with pseudo-labeling for histopathological image classification [1.9574002186090493]
広範にラベル付けされたデータセットを必要としない半教師付きパッチレベルの組織像分類モデルであるCLASS-Mを提案する。
2つの明確な細胞腎細胞癌データセットの他の最先端モデルと比較した。
論文 参考訳(メタデータ) (2023-12-12T04:38:30Z) - Weakly-supervised positional contrastive learning: application to
cirrhosis classification [45.63061034568991]
大規模な医療画像データセットは、低信頼で弱いラベルで安価に注釈を付けることができる。
組織学に基づく診断のような高信頼なラベルへのアクセスは稀で費用がかかる。
提案手法は,効率的な弱教師付き位置対応学習戦略 (WSP) を提案する。
論文 参考訳(メタデータ) (2023-07-10T15:02:13Z) - SPLAL: Similarity-based pseudo-labeling with alignment loss for
semi-supervised medical image classification [11.435826510575879]
半教師付き学習(SSL)メソッドはラベル付きデータとラベルなしデータの両方を活用することで課題を軽減することができる。
医用画像分類のためのSSL法では,(1)ラベルなしデータセットの画像に対する信頼性の高い擬似ラベルの推定,(2)クラス不均衡によるバイアスの低減という2つの課題に対処する必要がある。
本稿では,これらの課題を効果的に解決する新しいSSLアプローチであるSPLALを提案する。
論文 参考訳(メタデータ) (2023-07-10T14:53:24Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
生体内試験は、医療機器の毒性に対する動物実験の代替手段である。
人間の疲労は、深層学習を魅力的なものにするために、エラー作成に重要な役割を果たします。
我々は、不完全ラベルのシームレス反復半監督補正(SISSI)を提案する。
本手法は,物体検出に適応的な早期学習補正技術を提供する。
論文 参考訳(メタデータ) (2022-08-05T18:52:20Z) - Less is More: Adaptive Curriculum Learning for Thyroid Nodule Diagnosis [50.231954872304314]
不整合ラベルによるサンプルの発見と破棄を適応的に行うAdaptive Curriculum Learningフレームワークを提案する。
また、TNCD: Thyroid Nodule Classification データセットも提供します。
論文 参考訳(メタデータ) (2022-07-02T11:50:02Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
フル参照(FR)画像品質評価(IQA)は、その知覚的差異をプリズム品質基準で測定することにより、歪み画像の視覚的品質を評価する。
ラベルなしデータは、画像劣化または復元プロセスから容易に収集することができ、ラベルなしのトレーニングデータを利用してFR-IQA性能を高めることを奨励する。
本稿では, 半教師付き, 正の未ラベル学習(PU)を用いて, ラベルなしデータを活用し, オフレーヤの悪影響を軽減することを提案する。
論文 参考訳(メタデータ) (2022-04-19T09:10:06Z) - Weakly-supervised Generative Adversarial Networks for medical image
classification [1.479639149658596]
Weakly-Supervised Generative Adversarial Networks (WSGAN) と呼ばれる新しい医用画像分類アルゴリズムを提案する。
WSGANは、ラベルのない少数の実画像のみを使用して、偽画像やマスク画像を生成し、トレーニングセットのサンプルサイズを拡大する。
ラベル付きデータやラベルなしデータの少ない使用により,WSGANは比較的高い学習性能が得られることを示す。
論文 参考訳(メタデータ) (2021-11-29T15:38:48Z) - Cost-Sensitive Regularization for Diabetic Retinopathy Grading from Eye
Fundus Images [20.480034690570196]
本稿では,眼底画像から糖尿病網膜症(DR)の重症度を予測するための制約を強制するための簡単なアプローチを提案する。
正規化要因として機能する余分な用語で標準分類損失を拡大する。
DRグレーディングに関連する各サブプロブレムにおいて,ラベルノイズのモデル化に我々の手法を適用する方法について述べる。
論文 参考訳(メタデータ) (2020-10-01T10:42:06Z) - FixMatch: Simplifying Semi-Supervised Learning with Consistency and
Confidence [93.91751021370638]
半教師付き学習(SSL)は、ラベルのないデータを活用してモデルの性能を向上させる効果的な手段を提供する。
本稿では、整合正則化と擬似ラベル付けという2つの共通SSL手法の単純な組み合わせのパワーを実証する。
筆者らのアルゴリズムであるFixMatchは、まず、弱拡張未ラベル画像上のモデルの予測を用いて擬似ラベルを生成する。
論文 参考訳(メタデータ) (2020-01-21T18:32:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。