論文の概要: Adaptive Conformal Prediction Intervals Over Trajectory Ensembles
- arxiv url: http://arxiv.org/abs/2508.13362v1
- Date: Mon, 18 Aug 2025 21:14:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.724514
- Title: Adaptive Conformal Prediction Intervals Over Trajectory Ensembles
- Title(参考訳): 軌道アンサンブル上の適応的等角予測間隔
- Authors: Ruipu Li, Daniel Menacho, Alexander Rodríguez,
- Abstract要約: 将来の軌道は、自律運転、ハリケーン予測、疫病モデルといった領域で重要な役割を果たしている。
本稿では,サンプル軌道を理論的カバレッジ保証付き校正された予測区間に変換する共形予測に基づく統一的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 50.31074512684758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Future trajectories play an important role across domains such as autonomous driving, hurricane forecasting, and epidemic modeling, where practitioners commonly generate ensemble paths by sampling probabilistic models or leveraging multiple autoregressive predictors. While these trajectories reflect inherent uncertainty, they are typically uncalibrated. We propose a unified framework based on conformal prediction that transforms sampled trajectories into calibrated prediction intervals with theoretical coverage guarantees. By introducing a novel online update step and an optimization step that captures inter-step dependencies, our method can produce discontinuous prediction intervals around each trajectory, naturally capture temporal dependencies, and yield sharper, more adaptive uncertainty estimates.
- Abstract(参考訳): 将来の軌道は、自律運転、ハリケーン予知、疫病モデルといった分野において重要な役割を担い、実践者は確率的モデルをサンプリングしたり、複数の自己回帰予測器を活用することで、一般的にアンサンブルパスを生成する。
これらの軌道は固有の不確かさを反映しているが、典型的には非校正である。
本稿では,サンプル軌道を理論的カバレッジ保証付き校正された予測区間に変換する共形予測に基づく統一的なフレームワークを提案する。
ステップ間の依存関係をキャプチャする新しいオンライン更新ステップと最適化ステップを導入することで、各トラジェクトリの周囲に不連続な予測間隔を生成し、時間的依存関係を自然に捕捉し、よりシャープで適応性の高い不確実性推定値を得ることができる。
関連論文リスト
- Bridging the Last Mile of Prediction: Enhancing Time Series Forecasting with Conditional Guided Flow Matching [9.465542901469815]
Conditional Guided Flow Matching (CGFM) は、補助的な予測モデルから出力を統合することで、フローマッチングを拡張するモデルに依存しないフレームワークである。
CGFMは、歴史的データを条件とガイダンスの両方に取り入れ、一方の条件付きパスを使用し、アフィンパスを用いて経路空間を拡大する。
データセットとベースラインにわたる実験は、CGFMが常に最先端のモデルより優れており、予測が進んでいることを示している。
論文 参考訳(メタデータ) (2025-07-09T18:03:31Z) - From Marginal to Joint Predictions: Evaluating Scene-Consistent Trajectory Prediction Approaches for Automated Driving [4.795092023802721]
マージナル予測モデルは、通常、各エージェントの将来の軌跡を独立して予測する。
合同予測モデルは、エージェント間の相互作用を明示的に説明し、社会的および物理的に一貫した予測をもたらす。
予測精度,多モード性,推論効率の観点から各手法の評価を行った。
論文 参考訳(メタデータ) (2025-07-07T17:58:53Z) - Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
時系列における不確実性定量化の問題を相関配列を利用して解決する。
共形予測フレームワークと量子レグレッションに基づく分布自由な新しい手法を提案する。
我々の手法は正確なカバレッジを提供し、関連するベンチマークで最先端の不確実性定量化を実現する。
論文 参考訳(メタデータ) (2025-02-13T16:12:17Z) - Conformalized Adaptive Forecasting of Heterogeneous Trajectories [8.022222226139032]
本稿では,新しいランダム軌道の全経路を十分に高い確率でカバーすることを保証された同時予測帯域を生成するための新しいコンフォメーション手法を提案する。
この解はどちらも原則であり、正確な有限サンプル保証を提供し、しばしば以前の方法よりもより情報的な予測をもたらす。
論文 参考訳(メタデータ) (2024-02-14T23:57:19Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Bridging the Gap Between Multi-Step and One-Shot Trajectory Prediction
via Self-Supervision [2.365702128814616]
正確な車両軌道予測は、自動運転における未解決の問題である。
本稿では,複数の軌道セグメントを連結した中間層を提案する。
提案するマルチブランチ・セルフスーパービジョン予測器は,中間将来のセグメントから始まる新しい予測について追加の訓練を受ける。
論文 参考訳(メタデータ) (2023-06-06T02:46:28Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。