論文の概要: State of Abdominal CT Datasets: A Critical Review of Bias, Clinical Relevance, and Real-world Applicability
- arxiv url: http://arxiv.org/abs/2508.13626v1
- Date: Tue, 19 Aug 2025 08:36:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.852155
- Title: State of Abdominal CT Datasets: A Critical Review of Bias, Clinical Relevance, and Real-world Applicability
- Title(参考訳): 腹部CTデータセットの現状 : バイアス, 臨床的意義, 実世界の応用性について
- Authors: Saeide Danaei, Zahra Dehghanian, Elahe Meftah, Nariman Naderi, Seyed Amir Ahmad Safavi-Naini, Faeze Khorasanizade, Hamid R. Rabiee,
- Abstract要約: 本研究は, 腹部CTデータセットの公開と, 臨床現場における人工知能(AI)応用への適合性を臨床的に評価するものである。
46例の腹部CTデータセット(50,256例)について検討した。
我々は相当な冗長性(59.1%のケースリユース)と西/地理スキュー(75.3%の北米とヨーロッパから)を見出した。
- 参考スコア(独自算出の注目度): 2.219700718486256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This systematic review critically evaluates publicly available abdominal CT datasets and their suitability for artificial intelligence (AI) applications in clinical settings. We examined 46 publicly available abdominal CT datasets (50,256 studies). Across all 46 datasets, we found substantial redundancy (59.1\% case reuse) and a Western/geographic skew (75.3\% from North America and Europe). A bias assessment was performed on the 19 datasets with >=100 cases; within this subset, the most prevalent high-risk categories were domain shift (63\%) and selection bias (57\%), both of which may undermine model generalizability across diverse healthcare environments -- particularly in resource-limited settings. To address these challenges, we propose targeted strategies for dataset improvement, including multi-institutional collaboration, adoption of standardized protocols, and deliberate inclusion of diverse patient populations and imaging technologies. These efforts are crucial in supporting the development of more equitable and clinically robust AI models for abdominal imaging.
- Abstract(参考訳): 本研究は, 腹部CTデータセットの公開と, 臨床現場における人工知能(AI)応用への適合性を臨床的に評価するものである。
今回,46例の腹部CTデータセット(50,256例)について検討した。
46のデータセット全体にわたって、相当な冗長性(59.1\%のケース再利用)と、西/地理スキュー(75.3\%の北米とヨーロッパから)を発見した。
このサブセットでは、最も一般的なハイリスクカテゴリはドメインシフト(63 %)と選択バイアス(57 %)であり、いずれも、特にリソース制限された設定において、さまざまな医療環境におけるモデルの一般化性を損なう可能性がある。
これらの課題に対処するため、多施設連携、標準化されたプロトコルの採用、多様な患者集団や画像技術の導入など、データセット改善のためのターゲット戦略を提案する。
これらの取り組みは腹部画像のためのより公平で臨床的に堅牢なAIモデルの開発を支援するために重要である。
関連論文リスト
- CADS: A Comprehensive Anatomical Dataset and Segmentation for Whole-Body Anatomy in Computed Tomography [27.1055374364626]
我々は,全体CTセグメント化のための異種データソースの体系的統合,標準化,ラベル付けを優先するオープンソースフレームワークであるCADSを提案する。
コアには22,022のCTボリュームの大規模なデータセットがあり、167の解剖学的構造に対する完全なアノテーションがある。
18の公開データセットと独立した実世界の病院コホートを包括的に評価することにより、SoTAアプローチに対するアドバンテージを実証する。
論文 参考訳(メタデータ) (2025-07-29T19:58:32Z) - Rethinking Whole-Body CT Image Interpretation: An Abnormality-Centric Approach [57.86418347491272]
全身に404例の異常所見を呈する包括的階層分類システムを提案する。
複数平面および全人体領域からの14.5K以上のCT画像を含むデータセットを寄贈し,19K以上の異常に対する接地アノテーションを念頭に提供した。
OminiAbnorm-CTは,テキストクエリに基づいて,多面的および全身的なCT画像に異常な所見を自動的に検出し,記述することができる。
論文 参考訳(メタデータ) (2025-06-03T17:57:34Z) - PathBench: A comprehensive comparison benchmark for pathology foundation models towards precision oncology [33.51485504161335]
病理基盤モデル(PFM)の最初の包括的なベンチマークであるPathBenchを紹介する。
我々のフレームワークは大規模データを組み込んで,PFMの客観的比較を可能にする。
当院では10病院で8,549人の患者から15,888件のWSIを収集し,64件以上の診断・予後調査を行った。
論文 参考訳(メタデータ) (2025-05-26T16:42:22Z) - Multi-Modal Explainable Medical AI Assistant for Trustworthy Human-AI Collaboration [17.11245701879749]
Generalist Medical AI (GMAI) システムは、バイオメディカル認知タスクにおいて、専門家レベルのパフォーマンスを実証している。
本稿では,XMedGPTについて紹介する。XMedGPTはクリニック中心のマルチモーダルAIアシスタントで,テキストと視覚の解釈性を統合している。
我々は,マルチモーダル解釈可能性,不確実性定量化,予測モデリング,厳密なベンチマークの4つの柱にまたがってXMedGPTを検証する。
論文 参考訳(メタデータ) (2025-05-11T08:32:01Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challengeは、23の臨床的に関連する大動脈枝と領域に注釈付き100 CTA巻の最初のデータセットを導入した。
本稿では,トップパフォーマンスアルゴリズムの課題設計,データセットの詳細,評価指標,詳細な分析について述べる。
論文 参考訳(メタデータ) (2025-02-07T21:09:05Z) - A Self-Supervised Framework for Improved Generalisability in Ultrasound B-mode Image Segmentation [0.2556201059248933]
我々は、BモードUS画像に適した対照的なSSLアプローチを導入し、RCL(Relation Contrastive Loss)を取り入れた。
提案手法は, 3つの乳房データセットにおいて, 従来の教師付きセグメンテーション法より有意に優れていた。
我々の研究は、特にデータ制限条件下で、ドメインにインスパイアされたSSLが米国のセグメンテーションを改善することを強調している。
論文 参考訳(メタデータ) (2025-02-04T17:06:41Z) - Semantic segmentation of surgical hyperspectral images under geometric
domain shifts [69.91792194237212]
本稿では、幾何学的アウト・オブ・ディストリビューション(OOD)データの存在下で、最先端のセマンティックセグメンテーションネットワークを初めて分析する。
有機移植(Organ transplantation)と呼ばれる専用の拡張技術により、一般化可能性にも対処する。
提案手法は,SOA DSCの最大67 % (RGB) と90% (HSI) を改善し,実際のOODテストデータ上での分配内性能と同等の性能を示す。
論文 参考訳(メタデータ) (2023-03-20T09:50:07Z) - The EMory BrEast imaging Dataset (EMBED): A Racially Diverse, Granular
Dataset of 3.5M Screening and Diagnostic Mammograms [2.243792799100692]
EMory BrEast画像データセットには3650,000の2Dと診断用マンモグラフィーが含まれており、白人とアフリカ系アメリカ人の患者に等しく分けられている。
私たちの目標は、このデータセットを研究パートナーと共有し、すべての患者に公平に提供し、医療AIのバイアスを減らすための乳房AIモデルの開発と検証を支援することです。
論文 参考訳(メタデータ) (2022-02-08T14:40:59Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。