論文の概要: Self-Aware Adaptive Alignment: Enabling Accurate Perception for Intelligent Transportation Systems
- arxiv url: http://arxiv.org/abs/2508.13823v1
- Date: Tue, 19 Aug 2025 13:33:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.937056
- Title: Self-Aware Adaptive Alignment: Enabling Accurate Perception for Intelligent Transportation Systems
- Title(参考訳): 自己認識適応アライメント:インテリジェントトランスポートシステムにおける正確な認識の実現
- Authors: Tong Xiang, Hongxia Zhao, Fenghua Zhu, Yuanyuan Chen, Yisheng Lv,
- Abstract要約: 提案手法は、ソースおよびターゲットドメインデータセットに基づいて訓練された特定の注意に基づくアライメントモジュールを用いる。
チャネルの重要性が再重み付けされた両方のドメインの機能は、リージョン提案ネットワークに入力される。
実験の結果,SA3は従来の最先端手法よりも優れた結果が得られることがわかった。
- 参考スコア(独自算出の注目度): 19.841516107325898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving top-notch performance in Intelligent Transportation detection is a critical research area. However, many challenges still need to be addressed when it comes to detecting in a cross-domain scenario. In this paper, we propose a Self-Aware Adaptive Alignment (SA3), by leveraging an efficient alignment mechanism and recognition strategy. Our proposed method employs a specified attention-based alignment module trained on source and target domain datasets to guide the image-level features alignment process, enabling the local-global adaptive alignment between the source domain and target domain. Features from both domains, whose channel importance is re-weighted, are fed into the region proposal network, which facilitates the acquisition of salient region features. Also, we introduce an instance-to-image level alignment module specific to the target domain to adaptively mitigate the domain gap. To evaluate the proposed method, extensive experiments have been conducted on popular cross-domain object detection benchmarks. Experimental results show that SA3 achieves superior results to the previous state-of-the-art methods.
- Abstract(参考訳): インテリジェントトランスポート検出におけるトップノッチの達成は重要な研究分野である。
しかし、クロスドメインシナリオの検出に関しては、まだ多くの課題に対処する必要がある。
本稿では,効率的なアライメント機構と認識戦略を活用することで,自己認識適応アライメント(SA3)を提案する。
提案手法では,ソースドメインとターゲットドメインのアライメントをトレーニングした特定のアライメントモジュールを用いて,画像レベルの特徴アライメントプロセスをガイドし,ソースドメインとターゲットドメインの局所的適応アライメントを可能にする。
チャネルの重要性が再重み付けされた両ドメインの特徴は、領域提案ネットワークに供給され、正常な領域特徴の取得を容易にする。
また,対象ドメイン固有のインスタンス・ツー・イメージレベルのアライメントモジュールを導入し,ドメインギャップを適応的に緩和する。
提案手法を評価するために,一般的なクロスドメインオブジェクト検出ベンチマークを用いて広範囲な実験を行った。
実験の結果, 従来の最先端手法よりもSA3の方が優れた結果が得られた。
関連論文リスト
- Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
オピニオンターゲット抽出(OTE)またはアスペクト抽出(AE)は意見マイニングの基本的な課題である。
最近の研究は、現実世界のシナリオでよく見られるクロスドメインのOTEに焦点を当てている。
そこで本稿では,ドメイン固有の教師と学生のネットワークから出力されるモデルが未学習のターゲットデータと一致しない対象サンプルを選択するためのSSLアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-28T16:31:17Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
ディープラーニングに基づく3Dオブジェクト検出は、大規模な自律走行データセットの出現によって、前例のない成功を収めた。
既存の3Dドメイン適応検出手法は、しばしばターゲットのドメインアノテーションへの事前アクセスを前提とします。
我々は、ソースドメインアノテーションのみを利用する、より現実的な、教師なしの3Dドメイン適応検出について研究する。
論文 参考訳(メタデータ) (2021-07-23T17:19:23Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Disentanglement-based Cross-Domain Feature Augmentation for Effective
Unsupervised Domain Adaptive Person Re-identification [87.72851934197936]
Unsupervised Domain Adaptive (UDA) Person Re-identification (ReID) は、ラベル付きソースドメインからラベル付きターゲットドメインへ知識を転送することを目的としている。
ひとつの課題は、トレーニング用に信頼できるラベルでターゲットドメインサンプルを生成する方法だ。
ディスタングルメントに基づくクロスドメイン機能拡張戦略を提案する。
論文 参考訳(メタデータ) (2021-03-25T15:28:41Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
教師なしドメイン適応は、ソースドメインからターゲットドメインに知識を転送する有望な道である。
本稿では,距離メトリックガイド機能アライメント(MetFA)を提案する。
我々のモデルは、クラス分布アライメントを統合して、ソースドメインからターゲットドメインにセマンティック知識を転送します。
論文 参考訳(メタデータ) (2020-08-19T13:36:57Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z) - Domain Adaptation by Class Centroid Matching and Local Manifold
Self-Learning [8.316259570013813]
本稿では,対象領域のデータ分散構造を徹底的に探索できる新しい領域適応手法を提案する。
対象領域内の同一クラスタ内のサンプルを個人ではなく全体とみなし、クラスセントロイドマッチングにより擬似ラベルを対象クラスタに割り当てる。
提案手法の目的関数を理論的収束保証を用いて解くために,効率的な反復最適化アルゴリズムを設計した。
論文 参考訳(メタデータ) (2020-03-20T16:59:27Z) - Exploring Categorical Regularization for Domain Adaptive Object
Detection [27.348272177261233]
ドメイン適応オブジェクト検出のための分類規則化フレームワークを提案する。
一連のAdaptive Domain Faster R-CNNメソッドのプラグイン・アンド・プレイコンポーネントとして適用することができる。
提案手法は、元のDomain Adaptive Faster R-CNN検出器よりも優れた性能を得る。
論文 参考訳(メタデータ) (2020-03-20T08:53:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。