論文の概要: You Don't Know Until You Click:Automated GUI Testing for Production-Ready Software Evaluation
- arxiv url: http://arxiv.org/abs/2508.14104v1
- Date: Sun, 17 Aug 2025 07:31:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-21 16:52:41.190099
- Title: You Don't Know Until You Click:Automated GUI Testing for Production-Ready Software Evaluation
- Title(参考訳): クリックするまでわからない:プロダクション対応のソフトウェア評価のためのGUI自動テスト
- Authors: Yutong Bian, Xianhao Lin, Yupeng Xie, Tianyang Liu, Mingchen Zhuge, Siyuan Lu, Haoming Tang, Jinlin Wang, Jiayi Zhang, Jiaqi Chen, Xiangru Tang, Yongxin Ni, Sirui Hong, Chenglin Wu,
- Abstract要約: RealDevWorldは、大規模言語モデル(LLM)とソフトウェア開発におけるコードエージェントの評価フレームワークである。
主なコンポーネントは、194のオープンエンドソフトウェアエンジニアリングタスクのコレクションであるRealDevBenchと、新しいエージェント・アズ・ア・ジャッジ評価システムであるAppEvalPilotだ。
実証的な結果は、RealDevWorldが効果的で、自動で、そして、人間に沿った評価を提供することを示している。
- 参考スコア(独自算出の注目度): 24.956175875766952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) and code agents in software development are rapidly evolving from generating isolated code snippets to producing full-fledged software applications with graphical interfaces, interactive logic, and dynamic behaviors. However, current benchmarks fall short in evaluating such production-ready software, as they often rely on static checks or binary pass/fail scripts, failing to capture the interactive behaviors and runtime dynamics that define real-world usability - qualities that only emerge when an application is actively used. This is the blind spot of current evaluation: you don't know if an app works until you click through it, interact with it, and observe how it responds. To bridge this gap, we introduce RealDevWorld, a novel evaluation framework for automated end-to-end assessment of LLMs' ability to generate production-ready repositories from scratch. It features two key components: (1) RealDevBench, a diverse collection of 194 open-ended software engineering tasks across multiple domains, incorporating multimodal elements to reflect real-world complexity; and (2) AppEvalPilot, a new agent-as-a-judge evaluation system that simulates realistic, GUI-based user interactions to automatically and holistically assess software functional correctness, visual fidelity, and runtime behavior. The framework delivers fine-grained, task-specific diagnostic feedback, supporting nuanced evaluation beyond simple success/failure judgments. Empirical results show that RealDevWorld delivers effective, automatic, and human-aligned evaluations, achieving an accuracy of 0.92 and a correlation of 0.85 with expert human assessments, while significantly reducing the reliance on manual review. This enables scalable, human-aligned assessment of production-level software generated by LLMs. Our code is available on GitHub.
- Abstract(参考訳): 大規模言語モデル(LLM)とソフトウェア開発におけるコードエージェントは、孤立したコードスニペットの生成から、グラフィカルインターフェース、インタラクティブロジック、動的振る舞いを備えた本格的なソフトウェアアプリケーションの生成に至るまで、急速に進化している。
しかしながら、現在のベンチマークでは、静的チェックやバイナリパス/フェイルスクリプトに依存することが多いため、実際のユーザビリティを定義するインタラクティブな動作やランタイムのダイナミクスをキャプチャできないため、このようなプロダクション対応ソフトウェアの評価に不足している。
これは現在の評価の盲点です – アプリをクリックして操作し、どのように反応するかを観察するまで、アプリが機能するか分からないのです。
このギャップを埋めるために、私たちは、LLMのプロダクション対応リポジトリをスクラッチから生成する能力のエンドツーエンド自動評価のための新しい評価フレームワークであるRealDevWorldを紹介します。
リアルデブベンチ(RealDevBench)は、複数のドメインにまたがる194のオープンエンドソフトウェアエンジニアリングタスクの多種多様なコレクションであり、実世界の複雑さを反映するマルチモーダル要素を取り入れている。
このフレームワークは、きめ細かいタスク固有の診断フィードバックを提供し、単純な成功/失敗判定以上のニュアンス評価をサポートする。
実証実験の結果,RealDevWorldは精度0.92と専門家による評価との相関0.85を達成し,手作業による評価への依存を著しく低減する。
これにより、LLMが生成するプロダクションレベルのソフトウェアを、スケーラブルでヒューマンアライメントで評価することができる。
私たちのコードはGitHubで入手可能です。
関連論文リスト
- Dynamic Benchmark Construction for Evaluating Large Language Models on Real-World Codes [33.80591142965565]
CODE2BENCHは、実世界のGitHubリポジトリから、堅牢で汚染に強いベンチマークを動的に構築するためのパイプラインである。
特に、CODE2BENCHは、(1) トレーニングデータの汚染を最小限に抑えるために、最近のコードの周期的取り込みによって達成される自動ダイナミズム、(2) 依存レベルの制御されたベンチマークインスタンスへの関数の構造化可能なスコープグラフベースの依存性分析、(3) 厳密なテストスイートの自動合成のためのプロパティベーステスト(PBT)の3つの重要なイノベーションを紹介している。
論文 参考訳(メタデータ) (2025-08-10T05:06:36Z) - Automated Validation of LLM-based Evaluators for Software Engineering Artifacts [0.7548538278943616]
REFINE(Ranking Evaluators for FIne grained Nuanced Evaluation)は、大規模言語モデル(LLM)をベンチマークする自動化フレームワークである。
REFINEは、徐々に品質が低下したアーティファクトを自動的に合成するために、新しい生成技術を適用している。
それぞれの候補評価器の構成を、そのランクが期待された順序にどの程度近いかを測定することで定量化する。
論文 参考訳(メタデータ) (2025-08-04T18:52:01Z) - ArtifactsBench: Bridging the Visual-Interactive Gap in LLM Code Generation Evaluation [48.24550684610705]
ArtifactsBenchは自動ビジュアルコード生成評価のためのフレームワークである。
我々のフレームワークは、生成した各アーティファクトをレンダリングし、時間的スクリーンショットを通してその動的な振る舞いをキャプチャする。
我々は1,825の多様なタスクの新しいベンチマークを構築し、30以上の主要な大規模言語モデルを評価する。
論文 参考訳(メタデータ) (2025-07-07T12:53:00Z) - Look Before You Leap: A GUI-Critic-R1 Model for Pre-Operative Error Diagnosis in GUI Automation [83.92224427735859]
実際の実行に先立って効果的なフィードバックを提供する事前の批判機構を導入する。
そこで我々は,GUI-Critic-TrainとGUI-Critic-Testを作成するために,推論ブートストラップに基づくデータ収集パイプラインを開発した。
我々のモデルは、現在のMLLMと比較して、批評家の精度に大きな利点をもたらす。
論文 参考訳(メタデータ) (2025-06-05T04:12:36Z) - Skill Discovery for Software Scripting Automation via Offline Simulations with LLMs [63.10710876536337]
検証済みスクリプトの集合であるソフトウェア固有のスキルセットをキュレートするためのオフラインシミュレーションフレームワークを提案する。
本フレームワークは,1)タスク作成,トップダウン機能の利用,およびボトムアップAPIのシナジー探索という2つのコンポーネントから構成される。
Adobe Illustratorでの実験では、我々のフレームワークは自動化の成功率を大幅に改善し、レスポンス時間を短縮し、ランタイムトークンのコストを削減しています。
論文 参考訳(メタデータ) (2025-04-29T04:03:37Z) - TestAgent: A Framework for Domain-Adaptive Evaluation of LLMs via Dynamic Benchmark Construction and Exploratory Interaction [29.72874725703848]
大規模言語モデル(LLM)は、様々な垂直領域に徐々に展開されている。
現在の評価方法は、実世界の要求に合致しない静的でリソース集約的なデータセットに依存している。
textbfBenchmark+は従来の質問応答ベンチマークを、より柔軟な戦略基準のフォーマットに拡張します。
我々は,これらの概念を実装したエージェントベースの評価フレームワークであるtextbftextscTestAgentを提案する。
論文 参考訳(メタデータ) (2024-10-15T11:20:42Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - Mobile-Env: Building Qualified Evaluation Benchmarks for LLM-GUI Interaction [28.53259866617677]
Android モバイル環境で GUI ベンチマークを作成するための総合ツールキットである Mobile-Env を紹介した。
我々は、さまざまな現実世界のアプリにまたがるオープンワールドのタスクと、固定されたワールドセットWikiHowを収集し、大量の動的オンラインコンテンツをキャプチャする。
我々の研究結果によると、高度なモデルでさえ、人間にとって比較的簡単なタスクに苦しむことがわかった。
論文 参考訳(メタデータ) (2023-05-14T12:31:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。